RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Naringenin alleviates bone cancer pain in rats via down-regulating spinal P2X7R /PI3K/AKT signaling: involving suppression in spinal inflammation

        Song Jian-Gang,Liu Lv 대한독성 유전단백체 학회 2021 Molecular & cellular toxicology Vol.17 No.4

        Background Bone cancer pain (BCP) seriously affects patient’s quality of life, which remains a difficult clinical problem, lacking effective drugs for treating it. The inflammation in the spinal cord involves the pathogenesis of BCP. The inhibition of spinal phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway or spinal P2X7 receptor (P2X7R) has previously been shown to alleviate BCP. Naringenin (NAR) has analgesic role and anti-inflammatory property. Objective The present study investigated the protection of NAR against BCP and explored whether the inhibition of spinal inflammation and the blockade of spinal P2X7R/PI3K/AKT signaling involved in this protection. Result NAR significantly alleviated mechanical allodynia (the increase of paw withdrawal threshold in Von Frey test) and thermal hyperalgesia (the increase of paw withdrawal latency in Hargreaves test) in BCP rats. Additionally, NAR inhibited inflammatory cytokines (the reduced levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were measured using Elisa assay) and down-regulated P2X7R/PI3K/AKT signaling (the decreased P2X7R expression, the reduced ratios of phosphorylated (p)-PI3K/PI3K and p-AKT/AKT, which were detected Western blot) in the spinal cord of BCP rats. Conclusion NAR alleviated BCP through inhibiting inflammatory cytokines and down-regulating P2X7R/PI3K/AKT signaling in the spinal cord of rats. These findings revealed that NAR, as an effective agent against BCP, may provide an effective approach in the management of bone cancer patients. Background Bone cancer pain (BCP) seriously affects patient’s quality of life, which remains a difficult clinical problem, lacking effective drugs for treating it. The inflammation in the spinal cord involves the pathogenesis of BCP. The inhibition of spinal phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway or spinal P2X7 receptor (P2X7R) has previously been shown to alleviate BCP. Naringenin (NAR) has analgesic role and anti-inflammatory property. Objective The present study investigated the protection of NAR against BCP and explored whether the inhibition of spinal inflammation and the blockade of spinal P2X7R/PI3K/AKT signaling involved in this protection. Result NAR significantly alleviated mechanical allodynia (the increase of paw withdrawal threshold in Von Frey test) and thermal hyperalgesia (the increase of paw withdrawal latency in Hargreaves test) in BCP rats. Additionally, NAR inhibited inflammatory cytokines (the reduced levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were measured using Elisa assay) and down-regulated P2X7R/PI3K/AKT signaling (the decreased P2X7R expression, the reduced ratios of phosphorylated (p)-PI3K/PI3K and p-AKT/AKT, which were detected Western blot) in the spinal cord of BCP rats. Conclusion NAR alleviated BCP through inhibiting inflammatory cytokines and down-regulating P2X7R/PI3K/AKT signaling in the spinal cord of rats. These findings revealed that NAR, as an effective agent against BCP, may provide an effective approach in the management of bone cancer patients.

      • KCI등재

        인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진

        이혜현(Hye Hyeon Lee),정진우(Jin-Woo Jeong),최영현(Yung Hyun Choi) 한국식품영양과학회 2016 한국식품영양과학회지 Vol.45 No.6

        PI3K/Akt 신호계는 세포 생존의 조절에 필수적인 경로로 대부분 암세포에서 활성이 증대되어 있다. 본 연구에서는 동충하초의 주요 생리활성 물질인 cordycepin에 의한 AGS 인체 위암 세포의 apoptosis 유도에 미치는 PI3K/Akt 신호계의 역할을 조사하였다. 본 연구의 결과에 의하면 cordycepin의 처리 농도의 증가에 따라 AGS 세포의 생존율은 억제되었으며, 이는 apoptosis 유도와 밀접한 관계가 있음을 핵의 형태적 변화와 flow cytometry 분석을 통하여 확인하였다. 이러한 cordycepin의 apoptosis 유도 효과는 PI3K/Akt 신호계의 활성 저하와 연관성이 있었으며, 세포독성을 나타내지 않는 범위의 PI3K/Akt 신호계 저해제인 LY294002를 cordycepin과 동시 처리하였을 경우, cordycepin에 의한 apoptosis 유발을 더욱 증대시켰다. 그리고 cordycepin에 대한 LY294002의 apoptosis 유발 증대는 caspases(caspase-3, -8 및 -9)의 활성 증가와 poly(ADP-ribose) polymerase 단백질의 분해 증가를 촉진했다. 또한 cordycepin이 처리된 AGS 세포에서 LY294002는 apoptosis 유도에 관여하는 Bax의 발현을 증가시켰고 apoptosis 억제에 관여하는 Bcl-2의 발현은 감소시켰으며, 이는 미토콘드리아 기능 손상과 미토콘드리아에서 세포질로의 cytochromec 유리를 증대시켰다. 따라서 PI3K/Akt 신호계의 활성 차단은 cordycepin의 항암 활성을 더욱 상승시켰으며, 이는 미토콘드리아 기능 손상과 caspase의 활성 증대를 통하여 이루어짐을 알 수 있었다. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

      • KCI등재

        Hep3B 간암세포에서 개똥쑥추출물로부터 Akt-mTOR-GSK3β 신호경로에 의한 apoptosis 효과

        김은지(Eun Ji Kim),김근태(Guen Tae Kim),김보민(Bo Min Kim),임은경(Eun Gyeong Lim),하성호(Sung Ho Ha),김상용(Sang-Yong Kim),김영민(Young Min Kim) 한국생명과학회 2016 생명과학회지 Vol.26 No.7

        개똥쑥 추출물은 항박테리아, 항바이러스 그리고 항산화효과를 포함한 다양한 기능을 가지고 있는 것으로 잘 알려져 있다. 그러나, 개똥쑥 항증식 작용기전은 알려지지 않았다. 따라서, 우리는 Hep3B 간암 세포에서 AAE추출물의 apoptotic 효과를 알아보고자 한다. 본 연구의 목적은 AAE가 인체 간암 세포주(Hep3B)의 증식에 미치는 효과를 분석하고 이에 대한 apoptosis의 효과를 조사하는데 있다. 인산화에 의해 활성화된 Akt는 TSC2, mTOR 그리고 GSK-3β의 인산화를 유도하여 세포증식을 유도한다. 본 연구에서, 우리는 AAE가Akt-mTOR-GSK3β 신호경로와 mitochondria를 매개하는 apoptotic 단백질을 통한 암세포의 apoptosis 유도할 것이라고 추측하였다. 이를 위해, 먼저 AAE가 처리농도에 따라 세포증식에 미치는 효과를 분석하였다. AAE처리는 세포증식을 억제시켰을 뿐만 아니라 젖산 탈수소 효소의 방출을 유도하였다. 이러한 결과는 MTT assay, LDH assay로 확인하였다. 또한 Hoechst 33342 staining, Annexin Ⅴ- PI staining, JC-1 staining 그리고 Western blotting을 통해 apoptosis 효과를 확인하였다. 본 연구에서는 간암세포에 AAE의 처리가 Akt, TSC2, GSK-3β-phosphorylated, Bim, Bcl-2, pro-caspase 3의 억제와 Bak, Bax 활성을 유도한다는 것을 확인하였다. 이러한 결과는 AAE가 Akt-mTOR-GSK-3β 신호경로를 통해 intrinsic apoptosis를 유도한다는 것을 나타낸다. Extracts from Artemisia annua Linné (AAE) have been known to possess various functions, including anti-bacterial, anti-virus, and anti-oxidant effects. However, the mechanism of those effects of AAE is not well-known. The aim of this study was to analyze the inhibitory effects of AAE on cell proliferation of the human hepatoma cell line (Hep3B) and to examine its effects on apoptosis. Activation by phosphorylation of Akt is cell proliferation through the phosphorylation of TSC2, mTOR, and GSK-3β. We suggested that AAE may exert cancer cell apoptosis through Akt/mTOR/GSK-3β signal pathways and mitochondria-mediated apoptotic proteins. For this, we examined the effects of extracts of AAE on cell proliferation according to treatment concentration. Treatment with AAE not only reduced cell viability, but also resulted in the induced release of lactate dehydrogenase (LDH). These results were determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay. Furthermore, we determined the effects of apoptosis through Hoechst 33342 staining, annexinⅤ-propidium iodide (PI) staining, 5,5‘, 6,6’-tetrachloro-1,1‘,3,3’-tetraethyl-imidacarbocyanine iodide (JC-1) staining, and Western blotting. Our study showed that the treatment of liver cancer cells with AAE resulted in the inhibition of Akt, TSC2, GSK-3β-phosphorylated, Bcl-2, and pro-caspase 3 and the activation of Bim, Bax, Bak, and cleaved PARP expressions. These results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulate of Akt/mTOR/GSK-3β signaling pathways.

      • KCI등재

        Hydroquinone suppresses IFN-b expression by targeting AKT/ IRF3 pathway

        김용,김한경,한상윤,정덕,양우석,김정일,김지혜,이영수,조재열 대한약리학회 2017 The Korean Journal of Physiology & Pharmacology Vol.21 No.5

        Previous studies have demonstrated the role of hydroquinone (HQ), a hydroxylated benzene metabolite, in modulating various immune responses; however, its role in macrophage-mediated inflammatory responses is not fully understood. In this study, the role of HQ in inflammatory responses and the underlying molecular mechanism were explored in macrophages. HQ down-regulated the expression of interferon (IFN)-b mRNA in LPS-stimulated RAW264.7 cells without any cytotoxicity and suppressed interferon regulatory factor (IRF)-3-mediated luciferase activity induced by TIR-domain-containing adapter-inducing interferon-β (TRIF) and TANK-binding kinase 1 (TBK1). A mechanism study revealed that HQ inhibited IRF-3 phosphorylation induced by lipopolysaccharide (LPS), TRIF, and AKT by suppressing phosphorylation of AKT, an upstream kinase of the IRF-3 signaling pathway. IRF-3 phosphorylation is highly induced by wild-type AKT and poorly induced by an AKT mutant, AKT C310A, which is mutated at an inhibitory target site of HQ. We also showed that HQ inhibited IRF-3 phosphorylation by targeting all three AKT isoforms (AKT1, AKT2, and AKT3) in RAW264.7 cells and suppressed IRF-3-mediated luciferase activities induced by AKT in HEK293 cells. Taken together, these results strongly suggest that HQ inhibits the production of a type I IFN, IFN-b, by targeting AKTs in the IRF-3 signaling pathway during macrophage-mediated inflammation.

      • KCI등재

        Prevalence and Prognostic Role of PIK3CA/AKT1 Mutations in Chinese Breast Cancer Patients

        Ling Deng,Xuehua Zhu,Yun Sun,Jiemin Wang,Xiaorong Zhong,Jiayuan Li,Min Hu,Hong Zheng 대한암학회 2019 Cancer Research and Treatment Vol.51 No.1

        Purpose The prevalence of PIK3CA in Chinese breast cancer patients may be underestimated. Therefore, we investigated the distribution of somatic PIK3CA/AKT1mutations in Chinese breast cancer patients and explored their roles in tumor phenotypes and disease prognosis. Materials and Methods Tumors from 507 breast cancer patients were prospectively collected from the West China Hospital between 2008 and 2013. Whole exons of AKT1 and PIK3CAwere detected in freshfrozen tumors using next-generation sequencing, and correlations between PIK3CA/AKT1 mutations and clinicopathological features were analyzed. Results The AKT1mutation was found in 3.6% (18/507) of patients. Tumors from patients that carried the AKT1mutation were estrogen receptor (ER)+/progesterone receptor (PR)+/human epidermal growth factor receptor 2 (HER2) and were more likely to have high expression levels of Ki67. The prevalence of the PIK3CA mutation was 46.5% (236/507), and 35 patients carried two or three variants of the PIK3CA gene. PIK3CA mutations were associated with ER+/PR+/HER2 status. The prognosis of patients with one mutation in PIK3CA (or PIK3CA/AKT1) was not significantly different than that of patients with wild-type PIK3CA (or PIK3CA/AKT1), while patients with two or three variants in PIK3CA (or PIK3CA/AKT1) exhibited poorer outcomes in the entire group and in all three subgroups (ER+, HER2, Ki67 high), particularly with respect to overall survival. Conclusion A high frequency of somatic PIK3CA mutations was detected in Chinese breast cancer patients. In addition to the mutation frequency, the tumor mutational burden of the PIK3CA and AKT1 genes should also be of concern, as they may be associated with poor prognosis.

      • SCOPUSKCI등재

        폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할 및 상호관련성

        이경희,이춘택,김영환,한성구,심영수,유철규,Lee, Kyoung-Hee,Lee, Choon-Taek,Kim, Young Whan,Han, Sung Koo,Shim, Young-Soo,Yoo, Chul-Gyu 대한결핵및호흡기학회 2004 Tuberculosis and Respiratory Diseases Vol.57 No.5

        연구배경 : PS-341은 최근에 개발된 강력하고 특이적인 proteasome 억제제로서, 일부 암환자에 투여하여 좋은 성적이 보고되고 있다. Proteasome 억제제의 항암효과는 아포프토시스 유발 물질, 즉 p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax, Bcl-2 등의 발현 증가와 관련이 있는 것으로 생각되고 있다. JNK와 GSK-$3{\beta}$도 아포프토시스에 관여하는 것으로 잘 알려져 있지만, PS-341에 의한 아포프토시스에서의 역할은 규명되지 못한 상태이다. 본 연구에서는 폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할을 규명하고자 하였다. 방 법 : NCI-H157과 A549 폐암세포주를 실험에 사용하였다. 세포생존능은 MTT 방법으로 평가하였고, 아포프토시스는 PARP의 분해로 평가하였다. JNK의 활성도는 in vitro immuno complex kinase 방법과 내인성 c-Jun의 인산화로 측정하였다. 각종 단백의 발현은 Western 분석으로 평가하였다. JNK1과 GSK-$3{\beta}$의 과발현은 각각 plasmid vector와 adenovirus vector를 이용하였다. 결 과 : PS-341 처치로 아포프토시스에 의한 세포생존율의 감소가 관찰되었다. PS-341 처치로 JNK가 활성화되었고, c-Jun의 발현이 유도되었다. Dominant negative JNK1의 과발현 또는 SP600125 전치치로 JNK의 활성화를 차단하면 PS-341에 의한 아포프토시스가 억제되었다. PS-341 처리로 JNK 활성화에 의존적으로 caspase 3의 활성화가 유도되었다. Caspase 활성화의 차단으로도 PS-341에 의한 아포프토시스가 억제되었다. PS-341에 의해 Akt가 활성화되었고, Akt 활성화의 차단으로 PS-341에 의한 아포프토시스가 심화되었다. PS-341에 의한 Akt 활성화로 GSK-$3{\beta}$가 불활성화되었다. Constitutively active GSK-$3{\beta}$의 과발현으로 PS-341에 의한 아포프토시스가 심화되었고, dominant negative GSK-$3{\beta}$의 과발현으로 PS-341에 의한 아포프토시스가 감소되었다. Lithium chloride 전처치와 dominant negative GSK-$3{\beta}$의 과발현으로 PS-341에 의한 JNK의 활성화와 c-Jun의 발현 증가가 억제되었다. 결 론 : 폐암세포주에서 PS-341에 의한 아포프토시스는 JNK/caspase 경로가 관여하며, 이는 PI3K/Akt 경로를 통한 GSK-$3{\beta}$의 불활성화에 의해 억제되는 것으로 판단된다. 따라서 PS-341의 항암효과를 최대화하기 위해서는 PI3K/Akt 경로를 통한 GSK-$3{\beta}$의 불활성화를 차단하는 치료법이 병행되어야 할 것으로 판단된다. Background : PS-341 is a novel, highly selective and potent proteasome inhibitor, which showed cytotoxicity against some tumor cells. Its anti-tumor activity has been suggested to be associated with modulation of the expression of apoptosis-associated proteins, such as p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax and Bcl-2. c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) are important modulators of apoptosis. However, their role in PS-341-induced apoptosis is unclear. This study was undertaken to elucidate the role of JNK and GSK-$3{\beta}$ in the PS-341-induced apoptosis in lung cancer cells. Method : NCI-H157 and A549 cells were used in the experiments. The cell viability was assayed using the MTT assay and apoptosis was evaluated by proteolysis of PARP. The JNK activity was measured by an in vitro immuno complex kinase assay and by phosphorylation of endogenous c-Jun. The protein expression was evaluated by Western blot analysis. Dominant negative JNK1 (DN-JNK1) and GSK-$3{\beta}$ were overexpressed using plasmid and adenovirus vectors, respectively. Result : PS-341 reduced the cell viability via apoptosis, activated JNK and increased the c-Jun expression. Blocking of the JNK activation by overexpression of DN-JNK1, or pretreatment with SP600125, suppressed the apoptosis induced by PS-341. The activation of caspase 3 was mediated by JNK activation. Blocking of the caspase 3 activation suppressed PS-341-induced apoptosis. PS-341 activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but its blockade enhanced the PS-341-induced cell death via apoptosis. GSK-$3{\beta}$ was inactivated by PS-341 via the PI3K/Akt pathway. Overexpression of constitutively active GSK-$3{\beta}$ enhanced PS-341-induced apoptosis; in contrast, this was suppressed by dominant negative GSK-$3{\beta}$ (DN-GSK-$3{\beta}$). Inactivation of GSK-$3{\beta}$ by pretreatment with lithium chloride or the overexpression of DN-GSK-$3{\beta}$ suppressed both the JNK activation and c-Jun up-regulation induced by PS-341. Conclusion : The JNK/caspase pathway is involved in PS-341-induced apoptosis, which is negatively regulated by the PI3K/Akt-mediated inactivation of GSK-$3{\beta}$ in lung cancer cells.

      • KCI등재후보

        산화성 손상을 받은 N18D3 세포에서 Epigallocatechin gallate가 Phosphoinositide 3-kinase/Akt 및 Glycogen synthase kinase-3경로에 미치는 효과

        고성호,권혁성,오화순,오재호,박윤주,김준규,김기석,김용순,양기화,김승업,김승현,정해관 한국임상약학회 2003 한국임상약학회지 Vol.13 No.1

        Neurodegenerative disorders are associated with apoptosis as a causing factor or an inducer. On the other hand, it has been reported that epigallocatechin gallate (EUG), one of antioxidants and flavonoids, and z-VAD-fmk, a nonselective caspase inhibitor, suppress oxidative-radical-stress-induced apoptosis. However, it is not yet known what is the effects of EGCG and z-VAD-fmk on the apoptotic pathway is through phosphoinositide 3-kinase (PI3K), Akt and glycogen synthase kinase-3 (GSK-3) as well as mitochondria, caspase-3 and poly (ADP-ribose) polymerase (PARP). We investigated the effects of EGCG by using treated N18D3 cells, mouse DRG hybrid neurons. Methods: Following 30 min exposure, the viability of N18D3 cells (not pretreated vs. EGCG or z-VAD-fmk pretreated) was evaluated by using MTT assay. The effect of EGCG on immunoreactivity (IR) of cytochrome c, caspase-3, PARP, PI3K/Akt and GSK-3 was examined by using Western blot, and was compared with that of z-Y4D-fmk. Results: EGCG or z-VAD-fmk pretreated N18D3 cells showed increased viability. Dose-dependent inhibition of caspase-3 activation accompanied by PARP cleavage were demonstrated by pretreatment of both agents. However, inhibition of cytochrome c release was only detected in EGCG pretreated N18D3 cells. On the pathway through PI3K/Akt and GSK-3, however, the result of Western blot in EGCG pretreated N18D3 cells showed decreased IR of Akt and GSK-3 and increased IR of p85a PI3K, phosphorylated Akt and GSK-3, and contrasted with that in z-VAD-fmk pretreated N18D3 cells showing no changes on each molecule. Conclusion: These data show that EGCG affects apoptotic pathway through upstream signal including PI3K/Akt and GSK-3 pathway as well as downstream signal including cytochrome c and caspase-3 pathway. Therefore, these results suggest that EGCG mediated activation of PI3K/Akt and inhibition GSK-B could be new potential therapeutic strategy for neurodegenerative diseases associated with oxidative injury.

      • SCIESCOPUSKCI등재

        Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling

        Yang, Kyeong-Eun,Jang, Hyun-Jin,Hwang, In-Hu,Hong, Eun Mi,Lee, Min-Goo,Lee, Soon,Jang, Ik-Soon,Choi, Jong-Soon The Korean Society of Ginseng 2020 Journal of Ginseng Research Vol.44 No.2

        Background: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. Methods: We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)<sup>+</sup>/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. Results: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD<sup>+</sup>/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD<sup>+</sup>/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. Conclusion: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.

      • SCIESCOPUSKCI등재

        Hydroquinone suppresses IFN-β expression by targeting AKT/IRF3 pathway

        Kim, Yong,Kim, Han Gyung,Han, Sang Yun,Jeong, Deok,Yang, Woo Seok,Kim, Jung-Il,Kim, Ji Hye,Yi, Young-Su,Cho, Jae Youl The Korean Society of Pharmacology 2017 The Korean Journal of Physiology & Pharmacology Vol.21 No.5

        Previous studies have demonstrated the role of hydroquinone (HQ), a hydroxylated benzene metabolite, in modulating various immune responses; however, its role in macrophage-mediated inflammatory responses is not fully understood. In this study, the role of HQ in inflammatory responses and the underlying molecular mechanism were explored in macrophages. HQ down-regulated the expression of interferon $(IFN)-{\beta}$ mRNA in LPS-stimulated RAW264.7 cells without any cytotoxicity and suppressed interferon regulatory factor (IRF)-3-mediated luciferase activity induced by TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) and TANK-binding kinase 1 (TBK1). A mechanism study revealed that HQ inhibited IRF-3 phosphorylation induced by lipopolysaccharide (LPS), TRIF, and AKT by suppressing phosphorylation of AKT, an upstream kinase of the IRF-3 signaling pathway. IRF-3 phosphorylation is highly induced by wild-type AKT and poorly induced by an AKT mutant, AKT C310A, which is mutated at an inhibitory target site of HQ. We also showed that HQ inhibited IRF-3 phosphorylation by targeting all three AKT isoforms (AKT1, AKT2, and AKT3) in RAW264.7 cells and suppressed IRF-3-mediated luciferase activities induced by AKT in HEK293 cells. Taken together, these results strongly suggest that HQ inhibits the production of a type I IFN, $IFN-{\beta}$, by targeting AKTs in the IRF-3 signaling pathway during macrophage-mediated inflammation.

      • KCI등재

        Inhibition of the interaction between Hippo/YAP and Akt signaling with ursolic acid and 3′3-diindolylmethane suppresses esophageal cancer tumorigenesis

        Ruo Yu Meng,Cong Shan Li,Dan Hu,Soon-Gu Kwon,Hua Jin,Ok Hee Chai,Ju-Seog Lee,김수미 대한약리학회 2023 The Korean Journal of Physiology & Pharmacology Vol.27 No.5

        Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3′3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3β signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼