http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Two-Stage Template Matching Using Integral Projection
김근형,박래홍,Kim, Geun Hyung,Park, Rae Hong The Institute of Electronics and Information Engin 1987 전자공학회논문지 Vol.24 No.2
The registration is an important part of image processing and pattern recognition. In this paper, the integral projection method is proposed as the first stage of the two-stage template matching. The computation time of the proposed method is one-tenth of that of the two-stage template matching technique with a sub-template. This method is applied to a noisy (real)image with a different bias level and gives a correct template position, while the two-stage template matching technique with a sub-template cannot detect correctly.
김근형 ( Geun-hyung Kim ) 한국정보처리학회 2012 한국정보처리학회 학술대회논문집 Vol.19 No.2
광대역 유무선 네트워크 기술과 컴퓨팅 기술의 발전으로 스마트 TV, 스마트 폰, 태블릿 PC 와 같은 스마트단말의 등장으로 사용자가 여러 단말을 가지게 되었으며, 상황에 따라 가장 적합한 단말을 사용하거나 보유한 여러 단말을 함께 사용하여 새로운 멀티미디어 사용 경험을 하게 되었다. 또한 W3C 은 웹 환경에서 다양한 웹 어플리케이션 개발의 기반이 되는 HTML5 표준과 개방형 웹 플랫폼을 제안하고 있다. 본 논문에서는 다양한 단말에서 지원하고 있는 웹 기반 플랫폼을 기반으로 웹 콘텐츠와 웹 서비스를 공유할 수 있는 공유 스크린 서비스 플랫폼의 기능을 도출하고 플랫폼을 설계한다.
후속군수지원 데이터 분석을 활용한 무기체계 품질향상 방법론
김근형(Geun-Hyung Kim),김용국(Young-Kuk Kim),박승환(Seung Hwan Park) 한국산학기술학회 2016 한국산학기술학회논문지 Vol.17 No.5
첨단화된 무기체계는 화력이 증가하고 다양한 기능이 추가됐지만, 무기의 결함은 치명적인 결과를 초래할 수 있다. 따라서 군은 무기체계 개발 혹은 운용 시 발생하는 결함을 최소화하기 위해 품질향상의 필요성을 제기하고 있다. 최근 제조 업에서는 품질 향상을 위해 품질 데이터를 활용한 빅 데이터 분석에 대한 연구가 활발히 이루어지고 있다. 방위산업도 품질 향상을 위해 다양한 시도를 하고 있지만, 무기 체계 개발 단계에서는 데이터 수집이 어려운 특성으로 인해 합리적인 품질 분석이 불가능하다. 따라서 본 논문은 후속군수지원 단계의 데이터를 활용하여 무기체계와 부대에 대한 결함 유형을 분석한다. 후속군수지원 데이터는 전력화 이후에 수집되는 데이터로써 무기체계를 사용하는 부대들의 정비 요청에 관한 정보를 포함한다. 이러한 정보를 통해 본 연구는 무기체계의 결함에 영향을 미치는 변수들을 선택하고, 선택된 변수들에 대한 분석을 수행한다. 이러한 분석 결과는 무기개발 시 고려해야할 중요한요인들을 찾고, 이를 반영한무기체계 품질향상 방법론을 제안한다. 이 방법론은 무기체계 개발 기간을 단축시키고, 결함을 줄여 품질향상에 도움이 될 것으로 기대한다. Although advanced weapon system weapons with high-performance and various functions have been developed, weapon defects can be fatal in the weapons industry. Therefore, the army requires quality improvement to reduce the number of defects which occur during both the development and operation of the weapon system. Recently, many manufacturers, including weapons manufacturers, have conducted analyses using defect related big-data in order to improve the quality. However, there have been few data analyses, because it is difficult to obtain the data required for the analysis of the development phase. Therefore, this study summarizes the pattern of the weapon system, military organization, and defect types using the actual data of the Post-Logistics Support (PLS) phase. The PLS data, which is referred to as the data collected after force integration, includes information on requests for maintenance. Through this information, this study selects key variables and analyzes the selected variables. The analysis results show the critical factors to be considered during the development phase. Finally, this study proposes a framework for advanced PLS systems using the PLS data. The proposed framework enables the development time of weapon systems to be further shortened and their quality to be improved.
김근형(Geun-hyung Kim),양성모(Seongmo Yang),강지훈(Jihoon Kang),정진은(Jin-eun Jeong),박승환(Seung Hwan Park) 한국신뢰성학회 2020 신뢰성응용연구 Vol.20 No.4
Purpose: The advent of the fourth industrial revolution has led to increased interest in military defense systems, and demand for new weapon systems involving artificial intelligence techniques has also increased. In particular, data from field operations, which are collected during post- logistics support, can be used for the reliability analysis of weapon systems. The existing reliability analysis method for weapon systems has a limitation in that it cannot reflect the maintenance history during the operation of the weapons systems, practical methods for predicting actual reliability via field operation analysis. Furthermore, typical data from field operations are collected manually, and therefore, they contatin atypical features introduced by operators’ personal decisions. Methods: In this research, a text mining approach is proposed to extract meaningful features, and some visualization techniques are presented for enhancing the interpretability of operational behavior. The Doc2Vec algorithm, which can measure the similarity between feature vectors, is used to extract a feature vector, and the t-SNE algorithm is used visualization. Results: The proposed algorithm represents the availability of unstructured data through feature extraction and visualization on the basis of post-logistics data. Feature vector based visualization shows that a new classification system for causes of defects can be established through manually wrote data.
김근형 ( Geun Hyung Kim ),최진우 ( Jinwoo Choi ),도레미 ( Re Mee Doh ),송승례 ( Seung Rye Song ),최정임 ( Junglim Choi ),유태민 ( Tae Min You ) 대한통합치과학회 2024 대한통합치과학회지 Vol.13 No.2
It is reported that the frequency of lingual nerve damage varies depending on the impaction pattern of the mandibular third molar, and that a relatively high frequency of lingual nerve damage occurs when there is a distal inclination (distoangulation), and that the thin thickness of the lingual plate increases the possibility of postoperative lingual nerve damage. Many studies have reported the relationship between mandibular third molars and thickness of lingual plate, but research on thickness of lingual plate in relation to the three-dimensional position of distoangulation is insufficient. Therefore, we aimed to identify risk factors for lingual nerve damage by comparing the correlation between the three-dimensional position of the mandibular third molar in the distoangulation and thickness of lingual plate with the vertical. Panoramic radiographs and CBCT were taken for 106 mandibular third molars to determine the thickness of the lingual plate and three-dimensional classification. Statistical analysis was performed by grouping according to the following criteria. Average lingual plate thickness in vertical and distoangulation, Correlation between mesiodistal angle and thickness of lingual plate, Three-dimensional classification of distoangulation and thickness of lingual plate, Correlation between buccolinugal angle and thickness of lingual plate in distoangulation. The results show that distoangulation has a lingual plate thickness that is 0.3702 mm thinner than vertical, which is a significant difference. No significant values were derived in other experiments. Distoangulation has a thinner lingual plate thickness compared to vertical and must be accompanied by careful surgery.
무기체계 신뢰도 예측 프로세스 현황과 후속군수지원 데이터 적용 방안
김근형(Geun-Hyung Kim),이강택(Kang-Taek Lee),윤정아(Jeong-Ah Yoon),서양우(Yang-Woo Seo),박승환(Seung Hwan Park) 한국산학기술학회 2018 한국산학기술학회논문지 Vol.19 No.1
우리 군의 무기체계는 강력한 화력과 다양한 기능을 보유하고 있으며, 이에 따라 무기체계 신뢰도 예측을 통한 품질 향상의 중요성 역시 점점 커지고 있다. 현재 우리 군의 무기체계 신뢰도 예측은 무기체계를 구성하는 부품들의 신뢰도들의 단순 합계를 통해 이루어지기 때문에 정확한 신뢰도 산출이 어렵다. 따라서 군은 신뢰도 향상을 위해 다양한 연구를 수행할 필요가 있다. 최근 다양한 산업에서 축적된 데이터를 활용한 많은 연구가 시도됨에 따라, 방위산업에서도 축적되고 있지만 활용되지 않은 다크(Dark) 데이터에 관한 분석을 시도하고 있다. 특히, 방위산업의 후속군수지원 단계는 무기체계의 신뢰도 향상을 위한 후속군수지원(PLS) 데이터를 활용할 필요가 있다. 본 연구는 부품단위의 기존 신뢰도 예측 방법에 대한 현황과 문제점을 검토하고, 후속군수지원의 결함 데이터의 적용방안을 제시한다. 이로 인해 무기체계 개발 시 신뢰도 예측의 정확성와 품질 향상에 도움이 될 것으로 기대한다. As the weapon systems of the Korean Army possess massive firepower and multiple functions, the improvement of their quality through reliability prediction is becoming increasingly important. Currently, the reliability prediction of the weapon systems of the Korean Army is a difficult process, because it is conducted by naively calculating the reliability of their constituent parts. Recently, as various studies using accumulated data are undertaken across various industries, the defense industry is also attempting to analyze the Dark Data which have been accumulated but not yet used. Therefore, it is necessary to apply Post-Logistics Support (PLS) data in order to improve the reliability of the weapon systems and, for this purpose, the Korean Army needs to conduct diverse studies. Especially, the PLS data in the defense industry is very useful for reliability prediction, because the data on the defects reported after the development of the weapon systems are accumulated in this phase. This study examines the existing reliability prediction method conducted using the component parts and proposes a new reliability prediction method using PLS data. This framework can ultimately contribute to improve the prediction accuracy and quality of the weapon systems.