RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        분광광도법에 의한 아세트산에서의 몇가지 산의 세기 측정에 관한 연구

        차기원,홍성욱,양창숙,이익춘,Ki-Won Cha,Sung-Wook Hong,Chang-Suk Yang,Ikchoon Lee 대한화학회 1987 대한화학회지 Vol.31 No.5

        benzenesulfonic acid (HBs)와 그 유도체인 p-chlorobenzenesulfonic acid(HCs)의 세기를 아세트산 용매에서 분광광도법으로 측정하였다. Indicator Base인 p-naphtholbenzein(PNB)을 사용하여 20.0${\pm}$0.1$^{\circ}$C에서 측정한 HTs, HBs, HCs 및 HNs의 이온화상수는 각각 $3.5{\times}10^2,\;4.1 {\times}10^2,\;$19.3{\times}10^2,\;50{\times}10^2$ 이었다. Acidic strength of benzenesulfonic acid (HBs) and it's derivatives, p-toluenesulfonic acid(HTs), p-chlorobenzenesulfonic acid(HCs) and m-nitrobenzenesulfonic acid(HNs), were measured in the anhydrous acetic acid medium by spectrophotometry. p-naphtholbenzein (PNB) was used as an indicator base and the ionization constants of HTs, HBs, HCs and HNs were $3.5{\times}10^2,\;4.1{\times}10^2,\;19.3{\times}10^2\;and\;50{\times}10^2$, respectively, at 20.0${\pm}$0.1$^{\circ}$C.

      • SCOPUSKCI등재
      • SCOPUSKCI등재
      • SCOPUSKCI등재

        음이온 교환크로마토그래피법에 의한 여러가지 산에서 우라늄과 바나듐의 용리현상에 관한연구

        차기원,김종훈,Ki-Won Cha,Jong-Hun Kim 대한화학회 1984 대한화학회지 Vol.28 No.5

        과염소산, 염산 그리고 황산의 농도 변화에 따른 우라늄과 바나듐 이온의 음이온수지에 대한 용리곡선으로부터 이들 이온의 화학종의 변화와 평형관계를 음이온교환크로마토그래피법으로 연구하였다. 우라늄은 $0.01\;{\sim}\;0.5M$ 과염소산용액에서는 $UO_2^{2+}$의 화학종으로만 존재하며 염산용액에서는 0.5M 까지는 $UO_2^{2+}$ 상태로 존재하나 염산의 농도가 증가함에 따라 여러가지 $Cl^-$의 착물이 형성되는 용리현상을 보였고 황산용액에서는 묽은 황산의 농도에서 우라늄이 상당히 늦게 용리되어 나오는 것으로 보아 $SO_4$=과의 $UO_2(SO_4)_2$= 같은 음이온성 착물이 생성되는 것 같다. 바나듐은 $0.01\;{\sim}\;0.5M$ 과염소산용액에서 바나듐의 용리현상으로부터 $H_2V_{10}O_{28}^{4-}$과 $VO_2^+$간에 다음과 같은 평형이 존재함을 알았다. $H_2V_{10}O_{28}^{4-} + 14H^+ = 10VO_2^+ + 8H_2O$ 염산 및 황산용액에서도 이런 농도범위에서는 위와같은 평형이 존재하나 $VO_2$+과 $Cl^-$ 및 $SO_4^{2-}간의 착이온이 형성되는 것 같다. 위 식의 평형상수값은 $1.9{\times}108$이었다. The species and equilibria of uranium and vanadium have been investigated in the various concentration of perchloric, hydrochloric and sulfuric acid by anion exchange chromatography. In the concentration range of $0.01\;{\sim}\;0.5M$ hydrochloric and $0.01\;{\sim}\;0.5M$ perchloric acid, uranium seems to be $UO_2^{2+}$species and in higher concentration than 0.5M hydrochloric acid $UO_2^{2+}$seems to form the chloride complex ion as $UO_2Cl^+$, $UO_2Cl_2$, $UO_2Cl_3^-$ and $UO_2Cl_4^{2-}$ according to the increase of the hydrochloric acid concentration. In the dilute(0.01N) sulfuric acid the adsorbability of uranium on anion exchange resin is strong and then decreases with increasing the sulfuric acid concentration. From this result we conclude that $UO_26{2+}$ formed the complex ion as $UO_2(SO_4)_2^{2-}$. In the perchloric acid of $0.01\;{\sim}\;0.5N$ concentration the existing equilibrium of vanadium and its constant calculated at $20^{\circ}C$ is $1.9{\times}108$ for $H_2V_{10}O_{28}^{4-}$ + $14H^+$ = $10VO_2^+ + 8H_2O$. The elution behaviors of vanadium in the hydrochloric and sulfuric acid are smiliar to those in perchloric acid.

      • SCOPUSKCI등재

        Separation of Rare Earth Elements in Monazite Sand by Anion Exchange Resin

        차기원,이종해,하영구,Ki-Won Cha,Joung-Hae Lee,Young-Gu Ha Korean Chemical Society 1980 대한화학회지 Vol.24 No.3

        모나자이트 중의 Y, La, Ce, Pr 및 Nd 들을 pH 8.4에서 EDTA와 착염을 만들어 미리 음이온 교환수지에 EDTA를 흡착시킨 수지관에 용리시켜 희토류 원소들의 분리를 시도하였다. 용리액은 pH 8.4의 EDTA를 사용하였으며, 용리액의 분율에 따라 측정한 각이온의 분리도는 55∼98%이었다. An anion exchange method for separating the individual rare earth elements in monazite into enriched fractions has been developed. The complexed rare earth ions with EDTA at pH 8.4 pass through the anion resin bed. The absorption order of the complexed ions was in accord with that of the stability constants of the complexes. The elution of a mixture of all the rare earths through an ion-exchange bed with an ammonia-buffered solution of EDTA indicated that this chelating agent is as effective for separating the light rare earths. The separation results of each ion obtained from their elution fractions are 55% to 98%.

      • SCOPUSKCI등재

        양이온 교환수지에 의한 희토류 원소의 용리현상에 관한 연구

        차기원,홍성욱,김경환,Ki-Won Cha,Sung-Wook Hong,Kyung-Hwan Kim 대한화학회 1986 대한화학회지 Vol.30 No.1

        양이온 교환수지를 이용하여 희토류 원소들의 용리현상을 연구하였다. 희토류 원소를 EDTA로 착물로 만들어 수지상단에 일정량 흡착 시킨 후 EDTA용액으로 용리하는 방법이 희토류 원소를 직접 양이온 교환수지에 흡착시키고 용리시키는 방법보다 희토류 원소들이 빨리 용리되어 용리액과 용리시간이 절약 되었다. 그러나 분리능은 약간 감소 하였다. 용리되는 순서는 착물의 안정도 상수가 큰 원소가 먼저 용리 되었다. Elution behavior of rare earth elements have been investigated with the EDTA solution as an eluent using cation exchange resin. Definite amount of the complexed rare earth ions at pH 8.4 is adsorbed through the cation exchanger containing cupric ion as a retaining ion and eluted with EDTA solution. The rare earth ions are eluted more rapidly in the above method than in the method in which uncomplexed rare earth ions are adsorbed on the cation exchange resin bed. In this method, the elution time and amount of eluent are saved but the resolution values also decreased a little. The elution order of complexed ion was determined in accordance with the stability constant of complexes with rare earth elements.

      • SCOPUSKCI등재

        음이온교환수지에 의한 모나자이트 중 희토류원소의 분리 (제2보)

        차기원,이종해,윤석호,하영구,Ki-Won Cha,Joung-Hae Lee,Suk-Ho Yoon,Youny-Gu Ha 대한화학회 1980 대한화학회지 Vol.24 No.6

        용리액의 pH와 EDTA 농도변화에 따른 모나자이트 중의 희토류원소의 분리에 이어 수지통의 크기, 유츌속도 수지종류에 따른 분리를 약 10g 의 희토류를 흡착시킨 후 연구하였다. 같은 무게의 수지에서는 수지통의 높이가 높은 것이 낮은 것보다 분리도가 좋았고, 전 희토류를 용리하는데 필요한 용리액의 부피는 비슷하였다. 용리액의 유출속도를 1ml/min에서 2ml/min으로 증가시킨 결과 전 희토류를 완전히 용리시키는데 필요한 용리액의 부피가 10l 더 필요했고 분리도는 1ml/min일때 보다 나빴다. 그러나 용리시키는데 걸리는 시간은 약 6일 단축되었다. 수지의 입자가 25∼50 mesh의 Ambellite IR A-400의 수지를 이용하여 분리한 결과는 Dowex 1(50∼100 mesh)의 수지를 사용하여 분리한 결과보다 못하였다. An anion exchange method for separating Y, La, Ce, Pr, and Nd element in monazites and into enriched fractions has been developed. The complexed rare earth ions with EDTA at pH 8.4 passed through the resin column of the various size and eluted with 0.0301 M EDTA as eluent at flow rate of 1 ml/min and 2 ml/min. The result of separation is good in the high column length rather than the low on using the resin of the same amount and the volume of eluent required in eluting all the rare earths at 2 ml/min flow rate is larger than that at 1 ml/min and the result of separation obtained here is unsatisfactory.

      • SCOPUSKCI등재

        Study on the Determination of Benzene Hexachloride in Contaminated Air

        차기원,장병두,Ki Won Cha,Byung Du Chang Korean Chemical Society 1978 대한화학회지 Vol.22 No.4

        공기중에 오염되어 있는 미량의(benzene hexachloride : BHC)를 정량하는 간단하고 예민한 방법을 연구하였다. 시료를 n-hexane에 통과시켜 BHC를 녹인 다음 n-hexane 용액의 흡광도를 245nm에서 측정하고 고체 BHC 표준시료를 기화시킨 후 n-hexane에 통과시키고 같은 방법으로 흡광도를 측정하여 얻은 검량선으로부터 농도를 계산하였다. A simple and sensitive method of determining trace amounts of benzene hexachloride (BHC) in air has been investigated. The sample is passed through the n-hexane solution and the absorbance of it was measured at 245nm spectrophotometrically and the concentration of benzene hexachloride was calculated using a working curve obtained from the vaporized standard benzene hexachloride passed into n-hexane.

      • SCOPUSKCI등재

        음이온 교환크로마토그래피에 의한 몰리브덴산과 텅스텐산의 중합, 평형 및 APT 제조에 관한 연구

        차기원,박기채,Cha Ki Won,Park Kee Chae 대한화학회 1975 대한화학회지 Vol.19 No.4

        용리액의 pH변화에 따른 몰리브덴산과 텅스텐산의 용리곡선과 이들 산의 분리조건을 얻었다. 이 용리곡선으로부터 이들 산의 중합반응의 평형상수를 크롬산과 중크롬산의 중합반응의 결과와 비교하여 계산했고 분리조건을 pregnant 용액 분리에 적용했다. 이때 얻은 이들산의 중합평형상수 값은 다음과 같다. $7MoO_4^{2-}+8H^+{\longleftrightarrow}Mo7O_{24}^{6-}+4H_2O K=4{\times}10^{53},$$6WO_4^{2-}+7H^+{\longleftrightarrow}HW_6O_{21}^{5-}+3H_2O K=3{\times}10^{54}.$ 이온 교환크로마토그라피를 이용하여 프레그난트용액중의 탄산염을 분리하는 데는 pH8의 0.2M 염화나트륨 용액을 사용했고 몰리브덴을 분리하는데는 pH5의 0.05M $Na_2SO_4+0.5M NH_4Cl$ 혼합용액을, 텅스텐을 분리하는데는 pH 10의 0.5M 염화암모늄 용액을 단계적으로 사용하여 정량적으로 분리했다. 이때 텅스텐은 염화암모늄 용액을 용리액으로 사용했기 때문에 직접 APT(Ammonium para-tungstate)형태로 얻어졌다. The elution behaviour of molybdate and tungstate through anion exchange column has been studied at the various pH. A discussion is made to evaluate the equilibrium constants of the polymerization of these acids comparing with the behaviour of chromate ion and dichromate ion. The eqailibrium constants found at $20^{\circ}$ are $K = 4{\times}10^{53} for 7MoO_4^{2-} + 8H^+ {\longleftrightarrow} Mo7O_{24}^{6- }+ 4H_2O$$ K = 3{\times}10^{54} for 6WO_4^{2-} + 7H^+ {\longleftrightarrow} HW6O_{21}^{5-} + 7H_2O$ referring to this results the conditions of separation of tungstate and molybdate are obtained. iThe quantitative separations of carbonate, molybdate and tungstate from the pregnant solution have been established by anion exchange chromatography, using the $22 cm{\times}44.27 cm^2$ column of Rexyn 201. The optimum eluents for the quantitative separation of those ions are as follows; 0.2M solution of sodium chloride at pH 8 for carbonate, the mixture of 0.5 M ammonium chloride and 0.05 M sodium sulfate at pH 5 for molybdate and 0.5 M solution of ammonium chloride at pH 10 for tungstate. Tungstate is directly recovered from the pregnant solution as a form of ammonium paratungstate, by eluting with ammonium chloride solution.

      • SCOPUSKCI등재

        원자발광광도법에 의한 란탄족 원소의 정밀분석에 관한 연구 (제 1 보) 희토류-EDTA 용리액에 의한 희토류 원소의 분리 회수

        차기원,오진희,하영구,김하석,Cha Ki-Won,Oh Jin-Hee,Ha Young-Gu,Kim Ha-Suck 대한화학회 1992 대한화학회지 Vol.36 No.5

        $NH_4^+형 양이온 교환수지와 희토류-EDTA 용리액을 사용하여 희토류 원소 혼합물에서 원하는 한 원소를 분리 회수하는 연구를 하였다. NH_4^+형 양이온 교환수지에 희토류 혼합물을 흡착시키고, La-EDTA 용액으로 용리하면 수지에 흡착된 희토류 원소중 La^{3+} 이온 외의 희토류 원소는 용리된다. 수지에 남아있는 La^{3+}은 EDTA 용리액으로 용리하여 분리한다. Ce^{4+}만 선택적으로 분리하고자 할때는 La-EDTA 대신 Ce-EDTA로 용리하고 수지에 남은 Ce^{4+}을 EDTA로 용리하면 된다. 이때 분리 구조는 다음과 같다. 흡착과정 : 3RNH_4 + Ln^{3+} = R_3Ln + 3NH^{4+}, La-EDTA 용리 : R_3Ln + La-Y- = R_3La + Ln-Y^-, EDTA 용리 : R_3La + HY^3- = La-Y + RH + 2R-.$ $NH_4^+ form cation exchange resin was used to separate one rare earth element from the rare earth mixture solution using Ln-EDTA eluent. Rare earth mixture solution was passed through the resin bed and eluted with 0.1M La-EDTA solution as an eluent. In here all the rare earth element except lanthanum ion are eluted and lanthanum ion absorbed in resin bed is eluted using 0.1M EDTA solution. If Ce-EDTA solution instead of La-EDTA solution was used as an eluent, all the rare earth element except cerium ion are eluted and cerium ion is eluted with 0.1M EDTA solution. This method can be applied to separate the individual rare earth element from the mixture. The separation mechanism is as follows: Absorption : 3RNH_4 + Ln^{3+} = R_3Ln + 3NH_4^+, La-EDTA elution : R_3Ln + La-Y- = R_3La + Ln-Y-, EDTA elution : R_3La + HY^3- = La_-Y + RH + 2R^-.$

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼