http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
자주포 보조동력장치 엔진 마운트 강도안전율 향상에 관한 연구
김병현,서재현,박영일,김용욱,김병호,Kim, Byung Hyun,Seo, Jae Hyun,Park, Young Il,Kim, Yong Wook,Kim, Byung Ho 한국군사과학기술학회 2016 한국군사과학기술학회지 Vol.19 No.3
The purpose of this study is to analyze the vibration characteristics and develop a mounting which can improve the strength safety factor to replace the high failure rate APU(auxiliary power unit) imported metal mounts with rubber mount that can be domestically produced. For this study, we analyzed in 3 kinds of rubber mounts hardness for the natural frequency to avoid the average excited frequency of the APU. In addition, allowed vibration acceleration of rubber mount confirmed to 90.8 g by adding a strength safety factor. To assure the validity of the design, we measure the vibration acceleration equipped with a metal mount and rubber mount 2 species(Hs 50 and 60). As a result, the proposed design method in this study is reasonable because the rubber mounts is excellent strength safety factor and vibration transmissibility than metal mounts.
홍수범람지도 작성을 위한 GIS기반 1차원 동역학적 해석 기법
김병현,최승용,한건연,Kim. Byung-Hyun,Choi. Seung-Yong,Han. Kun-Yeon 한국방재학회 2011 한국방재학회논문집 Vol.11 No.6
홍수는 한 국가의 발전에 영향을 미칠 수 있는 주요 자연재해 중 하나이다. 세계 각국에서는 댐, 저류지, 제방 등과 같은 수공 구조물의 설계빈도를 초과하는 이상 홍수가 발생할 경우에 대비하여 비구조적 대책의 일환으로 홍수범람지도를 작성하고 있다. 본 연구는 댐 붕괴에 대한 1차원 하천수리해석 모형(DAMBRK)과 GIS를 연계한 홍수범람지도 작성 방법에 관해 보여준다. 이를 위해 여러 가지의 댐 붕괴 시나리오에 따라 붕괴유출량을 산정하고, 이 중 가장 극한조건에 대한 하류부 홍수추적을 통해 하류부 주요지점별 첨두유량, 최고홍수위, 홍수파 도달시간, 최고홍수위 도달시간을 산정하고 최고홍수위와 좌 우 제방고도 비교한다. 그리고 이러한 하천수리해석 결과를 GIS를 연계하여 수심별 홍수범람지도를 작성하는 방법에 관해 상세하게 보여준다. 본 연구에서 제안한 홍수범람지도 작성방법은 홍수터 해석에 대해 1차원 하천수리해석 모형이 가지는 한계점을 보완할 수 있다. Flooding as one of the major natural disasters affects country`s economy. Most country is establishing a flood inundation maps as a non-structural measures to prevent damages from an abnormal flooding over the design criteria of hydraulic structures such as dams, storages, and levees et al. This study suggests method to establish GIS based inundation map induced by dam-break flood simulated by 1D hydrodynamic model(DAMBRK). In this study, the dam-break hydrograph were simulated by various scenario events and especially for the extreme event, peak discharge, peak water surface elevation, arrival time of flood wave and peak water surface elevation are calculated by flood routing at the control points and peak water surface elevation was compared with levee height to detect inundation. In addition, the detailed flood inundation mapping processes at each water level linking with GIS are presented in this study. The proposed method to establish a flood inundation map is able to complement the limitation of 1D hydrodynamic model in analyses of flood plains.
K-means 알고리즘을 사용한 칼라 동영상 링잉 노이즈 감쇄 방법의 개선
김병현,장준영,장원우,최현철,강봉순,Kim, Byung-Hyun,Jang, Jun-Young,Jang, Won-Woo,Choi, Hyun-Chul,Kang, Bong-Soon 한국정보통신학회 2011 한국정보통신학회논문지 Vol.15 No.3
본 논문에서는 CODEC을 사용한 동영상의 손실 압축에 의해 발생하는 블러링 현상과 복원 과정 중 발생하는 링잉 노이즈를 감쇄하기 위한 개선된 선명도 향상 알고리즘을 제안하였다. 기존 알고리즘은 RGB 색 좌표계의 세 가지 칼라 값을 사용하는 연산으로 인해 많은 연산량을 요구한다. 이를 개선하기 위해 YCbCr 색 좌표계 중 휘도 값만을 사용하여 연산하였다. 시뮬레이션을 통해 RGB 칼라 값을 사용하는 기존 알고리즘과 휘도 성분인 Y 칼라 값만을 사용하는 개선된 알고리즘의 성능이 동등함을 확인하였다. 또한 Kodak 표준 이미지를 사용한 연산 처리 속도 측정을 통해서 개선된 알고리즘의 연산 처리 속도가 기존 알고리즘에 비해 약 24% 향상함을 확인하였다. In this paper, we proposed the improved Advanced Detail Enhancement algorithm that improve the blurring by the lossy compression with CODEC and reduce the ringing artifacts in restoration. The conventional algorithm needs much amount of the process by the use of RGB color space. To improve this, we only used the luminance value in YCbCr color space. We verified that the performance of the improved algorithm with Y color value, the luminance value, is equal to the conventional algorithm with RGB color value and that the operation time of the improved is shorter about 24% than the conventional through the measurement of the operation time with Kodak standard images.
이미지 센서에 의해 발생하는 노이즈 제거를 위한 영상의 조도에 따른 적응적 로컬 시그마 필터의 구현
김병현,곽부동,한학용,강봉순,이기동,Kim, Byung-Hyun,Kwak, Boo-Dong,Han, Hag-Yong,Kang, Bong-Soon,Lee, Gi-Dong 한국융합신호처리학회 2010 융합신호처리학회 논문지 (JISPS) Vol.11 No.3
In this paper, we proposed the adaptive local sigma filter reducing noises generated by an image sensor. The small noises generated by the image sensor are amplified by increased an analog gain and an exposure time of the image sensor together with information. And the goal of this work was the system design that is reduce the these amplified noises. Edge data are extracted by Flatness Index Map algorithm. We made the threshold adaptively changeable by the luminance average in this algorithm that extracts the edge data not in high luminance, but just low luminance. The Local Sigma Filter performed only about the edge pixel that were extracted by Flatness Index Map algorithm. To verify the performance of the designed filter, we made the Window test program. The hardware was designed with HDL language. We verified the hardware performance of Local Sigma Filter system using FPGA Demonstration board and HD image sensor, $1280{\times}720$ image size and 30 frames per second.
영상 신호 처리기술을 이용한 타이어 패턴 소음 예측 기술
김병현(Kim, Byung-Hyun),황성욱(Hwang, Sung-Uk),이상권(Lee, Sang-Kwon) 한국소음진동공학회 2013 한국소음진동공학회 논문집 Vol.23 No.8
Tire noise is divided into two parts. One is pattern noise the other one is road noise. Pattern noise primarily occurs in over 500 Hz frequency but road noise occurs mainly in low frequency. It is important to develop a technology to predict the pattern noise at the design stage. Prediction technology of pattern noise has been developed by using image processing. Shape of tire pattern is computed by using imaging signal processing. Its results are different with the measured one. Therefore, the prediction of actual measured pattern noise is valuable. In the signal processing theory is applied to calculate the impulse response for the measurement environment. This impulse response used for the prediction of pattern noise by convolving this impulse response by the results of image processing of tire pattern.
김병현(Byung-hyun Kim),이도현(Do-hyun Lee),민경육(Kyeong-Yuk Min),정정화(Jong-wha Chong) 대한전자공학회 2021 대한전자공학회 학술대회 Vol.2021 No.6
In this paper, A CNN-based ensemble model for epileptic seizure detection is proposed. The proposed model improves seizure detection performance through a structure that merges the training results of AlexNet, VGG16, VGG19 models and retrains the merged data into the MLP model. In addition, the proposed model rearrange the learning results of the three models used in the merge phase into one-dimensional data, learn the merged data in the re-learning phase into an MLP model with a fully connected layer, and derive the final results through the softmax function. As a result of the CPSM experiment using the CHB-MIT Scalp EEG Database with the proposed model, the average sensitivity of 92% and the FPR of 0.36 were obtained.
영상장비와 딥러닝을 이용한 고속도로 터널 균열 탐지 시스템 개발
김병현 ( Byung-hyun Kim ),조수진 ( Soo-jin Cho ),채홍제 ( Hong-je Chae ),김홍기 ( Hong-ki Kim ),강종하 ( Jong-ha Kang ) 한국구조물진단유지관리공학회 2021 한국구조물진단유지관리공학회 논문집 Vol.25 No.4
빠르게 증가하는 노후 터널을 효율적으로 관리하기 위하여 최근 영상장비를 이용한 점검 방법론들이 많이 제안되고 있다. 하지만 기존의 방법론들은 대부분 국한된 영역에서 검증을 수행하였을 뿐 아니라, 다른 물체들이 존재하지 않는 깨끗한 콘크리트 표면에서 검증되어 실제 현장에 대한 적용성을 검증하기 어려웠다. 따라서 본 논문에서는 이러한 한계를 극복하기 위하여 비균열 물체 학습에 기반한 6단계 터널 균열 탐지 딥러닝 모델 개발 프레임워크를 제안한다. 제안된 프레임워크는 터널에서 취득된 이미지 내 균열 탐색, 픽셀 단위 균열 라벨링, 딥러닝 모델 학습, 비균열 물체 수집, 비균열 물체 재학습, 최종 학습 데이터 구축의 총 6단계로 이루어진다. 제안된 프레임워크를 이용하여 개발된 균열 탐지 딥러닝 모델 개발을 수행하였으며, 일반 균열 1561장, 비균열 206장으로 개별 물체 세분화(Instance Segmentation) 모델인 Cascade Mask R-CNN을 학습시켰다. 학습된 모델의 현장 적용성을 검토하기 위하여 전선, 전등 등을 포함하는 약 200m 길이의 실제 터널에서 균열 탐지를 수행하였다. 실험 결과 학습된 모델은 99% 정밀도와 92%의 재현율을 나타내며 뛰어난 현장 적용성을 나타내었다. In order to efficiently inspect rapidly increasing old tunnels in many well-developed countries, many inspection methodologies have been proposed using imaging equipment and image processing. However, most of the existing methodologies evaluated their performance on a clean concrete surface with a limited area where other objects do not exist. Therefore, this paper proposes a 6-step framework for tunnel crack detection deep learning model development. The proposed method is mainly based on negative sample (non-crack object) training and Cascade Mask R-CNN. The proposed framework consists of six steps: searching for cracks in images captured from real tunnels, labeling cracks in pixel level, training a deep learning model, collecting non-crack objects, retraining the deep learning model with the collected non-crack objects, and constructing final training dataset. To implement the proposed framework, Cascade Mask R-CNN, an instance segmentation model, was trained with 1561 general crack images and 206 non-crack images. In order to examine the applicability of the trained model to the real-world tunnel crack detection, field testing is conducted on tunnel spans with a length of about 200m where electric wires and lights are prevalent. In the experimental result, the trained model showed 99% precision and 92% recall, which shows the excellent field applicability of the proposed framework.