RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        근권 미생물 관주 처리된 분화용 시클라멘 로즈위드아이의 광원에 따른 화색에 비교분석

        김유선,최스란 한국기초조형학회 2014 기초조형학연구 Vol.15 No.1

        The results of this study showed that Cyclamen flower color changed according to the type of microorganism. However, flower color of lower chroma showed no difference by type of light. On the other hand, flower color of high chroma differed by type of light source in the high concentration group. This result can be applied economically in a highly marketable product. This study aimed to investigate the effects of microorganisms on flower color. For this purpose, this paper analyzed changes in Cyclamen flower color upon treatment with rhizosphere microorganisms under light sources. Cyclamen flowers were treated with five types of photosynthetic bacteria and Lactobacillus plantarum. The color of floral leaves was analyzed under three types of light (Incandescent Illuminant A, Cool White Fluorescent-F2, TL85-F10) on the basis of key light (D50). Color of floral leaves was measured as spectrum data by a X-rite Eye-One Pro spectrophotometer. The result of this study shows that flower color by lights applied microorganism is different by type of microorganism. But a flower color of lower chroma has no difference by type of lights. On the other hands, a flower color of high chroma has different by type of lights in high concentration group. This result is expected to utilize this research as a economic value for a high marketable product. 본 연구에서는 선행연구에 이어 근권 미생물이 처리된 시클라멘의 광원에 따른 화색(花色, flower color)의 변화를 비교·분석하여 유용미생물이 화색에 쓰이는 활용범위를 넓히고자 하였다. 식물선정은 재배방법이 용이하고, 시장성이 우수한 미디엄품종으로 시클라멘(Cyclamen)을 선정하였고 이 식물에 활용성이 좋고 널리 사용되고 있는 유용미생물인 광합성세균(Photosynthetic bacterium), 바실러스균(Bacillus subtilis), 유산균(Lactobacillus plantarum)을 5가지의 각기 다른 배율로 처리하였다. 그리고 식물의 꽃잎을 측색기(X-rite Eye-One Pro spectrophotometer)를 이용하여 스펙트럼 데이터를 얻은 후, 주광(D50)을 기준광으로 하여 일반가정에서 가장 사용 빈도가 높은 3가지 조명(Incandescent Illuminant A, Cool White Fluorescent-F2, TL85-F10) 아래에서 꽃잎의 색채가 어떻게 시각적으로 나타나는지 비교․분석하였다. 그 결과 미생물 처리 시 광원의 따른 화색은 광합성균 처리를 한 시클라멘에서는 꽃잎의 채도가 높은 경우 고농도에서 명확한 화색을 보였다. 또 바실러스균을 처리한 시클라멘에서는 다른 미생물 처리한 시클라멘에 비해 전체적으로 안정감 있는 화색의 변화를 보였다. 또 유산균 처리한 시클라멘에서는 화색이 너무 밝거나 어둡게 변화한 것이 관찰되었다. 이처럼 미생물에 따라 상이한 결과를 볼 수 있지만 주광D50과의 색차값은 광합성세균, 바실러스균, 유산균 모두 F2광원에서 제일 큰 차이를 보였고 그 다음으로 A광원, F11광원 순으로 주광과 차이가 있었다. 이러한 결과에 따라 화색 조절 시 미생물을 활용한다면 경제적으로나 상품성에도 효과가 있을 것으로 기대하였다.

      • KCI등재후보

        헤어리베치 꽃색의 유전

        구자환,한옥규,손범영,이진석,김정태,김대욱,이유영,김민태,문중경,황종진,김충국,백성범,권영업 한국육종학회 2013 한국육종학회지 Vol.45 No.3

        헤어리베치의 꽃색 중 보라색, 분홍색, 백색의 유전 양상을 구명하기 위하여 보라색 꽃 품종(청풍보라), 분홍색 꽃 품종(Mamecho) 그리고 백색 꽃 품종(HV-Kw1) 상호 간에 교잡하여 잡종 2세대(F2)에서 꽃색 분리 비율을 조사하고, 또한 분홍색과 연분홍색 사이의 유전 양상을 조사하기 위하여 연분홍색 꽃 품종(HV-Mp1)과 분홍색 꽃 품종(Mamecho)을 교잡하여 F2에서 꽃색 분리 비율을 조사한 결과 백색/보라색 조합과, 보라색/분홍색 조합에서 보라색은 백색과 분홍색에 대해 3 : 1의 비율로 분리하였고, 연분홍색/분홍색 조합에서 분홍색 3, 연분홍색 1의 비율로 분리하였으나, 백색/분홍색 조합의 F2 집단에서는 보라색 9, 분홍색 3, 백색 4의 비율로 분리하였다. 이러한 헤어리베치 꽃색 유전분리 결과로 볼 때 본 연구에서 사용된 품종들의 보라색, 분홍색, 그리고 백색 꽃은 서로 다른 두 쌍의 유전자 열성상위 작용에 의해 발현되며, 연분홍색은 분홍색에 대하여 단일 열성관계인 것으로 나타났다. 본 연구결과는 헤어리베치 품종 육성의 기초 자료로 유용하게 활용될 수 있을 것으로 기대된다. Flower color of hairy vetch (Vicia villosa Roth) was observed individually in F2 of crosses among violet, white, pink flower varieties, and between pale pink and pink flower varieties for providing information of useful gene as source of colored flower. F2 segregation mode of flower color between cross of white/violet was fitted to 3 violet : 1 white, and same segregation ratio of 3 violet : 1 pink was found in F2 of cross of violet/pink flower variety. Also, F2 segregation of flower color between cross of pale pink/pink flower variety was fitted to 3 violet : 1 white. When white flower was crossed with pink flower, flower color in F2 population segregated into 9 violet : 3 pink : 4 white. Based on the results, this study indicated that flower color of parental varieties was controlled by recessive epistatic interactions of two genes, and pale pink flower color was recessive to the pink color of the parental variety. This flower color inheritance may be used for practical application in breeding of hairy vetch variety.

      • SCIESCOPUSKCI등재

        Conjoint 분석을 통한 주요 절화류의 소비 예측 분석

        임진희(Jin Hee Lim),심명선(Myung Syun Shim),서지연(Ji Yeon Seo),백이화(Yi Hwa Baek) 한국원예학회 2014 원예과학기술지 Vol.32 No.5

        This study was conducted to improve the consumption of floriculture plants by researching preferences of consumers for the main types of cut flowers. We analyzed the results of surveys, carried out by a company, that were largely about roses, chrysanthemums, and lilies. After departmentalizing consumers into groups and analyzing the results through conjoint and cluster analysis, we found that consumers showed a higher rate of use based on price and vase life than on flower color and flower shape in roses. The groups of rose consumers preferred a price of 1000 won, spray type flower shape, vase life of 7-8 days, and red flower color. In chrysanthemums, consumers showed higher rate of use for flower color than for vase life, flower shape, and price. The groups of chrysanthemum consumers preferred a price of 1000 won, standard flower shape, 16-20 days vase life, and yellow flower color. In lilies, consumers showed higher use rate for flower shape than vase life, price, and flower color. Lily consumers preferred a price of 2000 won, large flower shape, 4-7 days vase life, and yellow flower color. Thus, the major cut flowers (rose, chrysanthemum, and lily) all showed highest use rates in for vase life. These results highlight the importance of understanding the characteristics of consumer interests. They also emphasize that we should plan and create market-oriented and consumer-oriented products to improve the consumption of floriculture plants.

      • KCI등재

        국화 꽃색 변경을 위한 플라보노이드 대사공학

        김다혜,박상규,박보라,이종렬,임선형 한국육종학회 2018 한국육종학회지 Vol.50 No.4

        In ornamental crops, the color and shape of flowers are one of the important traits. Generally, flower colors are determined by accumulating pigments such as carotenoids, flavonoids, and betalains. Among them, flavonoids are responsible for broad ranges of colors. Chrysanthemums are one of the most popular ornamental crops in the world, and there have been many efforts to change their flower color. In chrysanthemum flowers, cyanidin-based anthocyanin confers pink or red color, whereas terpenoid-based carotenoids are mainly responsible for yellow and green colors. However, blue colored chrysanthemums do not occur in nature. To date, there have been attempts to obtain blue or violet-colored chrysanthemum flowers through the introduction of a novel gene for accumulating delphinidin-based anthocyanins, while other studies have reported changing endogenous metabolites through the reconstruction of flavonoid biosynthesis. Since various transcription factors are involved in the regulation of flavonoid biosynthesis, it is important to understand not only the structural genes, but also the transcription factors required for the modification of flavonoid-based flower color. Therefore, in this paper, we describe the flavonoid biosynthetic pathway and its regulation, and review previous studies on the change in flower color through modification of flavonoid biosynthesis. This effort could be an important milestone in successfully achieving the modification of chrysanthemum flower color by means of plant biotechnology.

      • KCI등재

        사계절 꽃 이미지의 색채 특성 분석

        박서희(Park Seo-hee),최경실(Choi Gyeong-sil) 한국색채학회 2010 한국색채학회 논문집 Vol.24 No.4

        본 연구는 환경 색의 일부 요소인 계절 꽃의 색채 특성 분석을 목적으로 한다. 계절 꽃의 색채 특성을 분석함으로써 계절마다 꽃 이미지들이 어떻게 다르게 보일 수 있는지에 대해 유추해보고, 계절 꽃 색을 활용할 수 있는 기반을 마련하고자 한다. 계절 꽃의 색채 데이터들은 시즌마다 계절의 변화에 민감한 패션, 섬유, 제품, 인테리어 디자인 등의 전략적인 마케팅 자료로 사용될 수 있다. 연구 과정 중, 분석도구로 적용된 GOG (Gain-Offset-Gamma) 모델은 입력하는 색채 데이터 값과 웹상에 재현되는 색채 값의 오차를 산정해주는 프로그램으로 웹 이미지 컬러 분석에 적합한 프로그램이다. 총 3가지 실험 과정 - 색채 분석, 육안 관찰, 디지털 디스플레이 특성화 ? 을 거친 결과, 계절마다 꽃 잎의 색상, 채도, 명도, 톤이 모두 다르다는 것을 알 수 있었다. 이러한 계절 색의 차이점은 분야를 넘어서 계절의 영향을 받는 여러 디자인 분야에 도움이 될 것으로 예상된다. 그 이유는 이러한 계절 색의 변화가 결국 그 자연 환경에 사는 사람들의 선호 색과 연상 색 등에 영향력을 미칠 수 있기 때문이다. The purpose of this research is to analyze the color of seasonal flowers, which is one of the elements in the environmental colors. The bases to utilize the colors of seasonal flowers will be established by inferring ‘how the flower images would look different dependent on the season’, through the analysis of seasonal flowers color characteristics. The color data of seasonal flowers can be used as strategic marketing data in the industries such as fashion, textile, commodities and interior design, which industries are sensitive to the change of season. In addition, the process of reducing the data error through the color expression characteristic of digital color was employed in the suggestion of more accurate and efficient methodology for the color management. The GOG (Gain-Offset-Gamma) model applied in this research as the analyzing tool is the program which estimates the color value errors between the input color data and colors expressed on the Web. The program is compatible program in the analysis of Web image colors. Three experiments were done for the color analysis, bare-eye analysis and characterization of digital display. It was possible to learn from the results that the colors, chroma, brightness and tones are all different dependent on the season. It is expected that such difference in the seasonal colors will be helpful to various design areas affected by season beyond its area. The reason is that the change in such seasonal colors will eventually give impact to the preferred colors and associated colors of people living in that natural environment.

      • Enhancing Flower Color through Simultaneous Expression of the <i>B-peru</i> and <i>mPAP1</i> Transcription Factors under Control of a Flower-Specific Promoter

        Kim, Da-Hye,Park, Sangkyu,Lee, Jong-Yeol,Ha, Sun-Hwa,Lim, Sun-Hyung MDPI AG 2018 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Vol.19 No.1

        <P>Flower color is a main target for flower breeding. A transgenic approach for flower color modification requires a transgene and a flower-specific promoter. Here, we expressed the <I>B-peru</I> gene encoding a basic helix loop helix (bHLH) transcription factor (TF) together with the <I>mPAP1</I> gene encoding an R2R3 MYB TF to enhance flower color in tobacco (<I>Nicotiana tabacum</I> L.), using the tobacco <I>anthocyanidin synthase</I> (<I>ANS</I>) promoter (PANS) to drive flower-specific expression. The transgenic tobacco plants grew normally and produced either dark pink (PANSBP_DP) or dark red (PANSBP_DR) flowers. Quantitative real time polymerase chain reaction (qPCR) revealed that the expression of five structural genes in the flavonoid biosynthetic pathway increased significantly in both PANSBP_DP and PANSBP_DR lines, compared with the non-transformed (NT) control. Interestingly, the expression of two regulatory genes constituting the active MYB-bHLH-WD40 repeat (WDR) (MBW) complex decreased significantly in the PANSBP_DR plants but not in the PANSBP_DP plants. Total flavonol and anthocyanin abundance correlated with flower color, with an increase of 1.6–43.2 fold in the PANSBP_DP plants and 2.0–124.2 fold in the PANSBP_DR plants. Our results indicate that combinatorial expression of <I>B-peru</I> and <I>mPAP1</I> genes under control of the <I>ANS</I> promoter can be a useful strategy for intensifying flower color without growth retardation<B>.</B></P>

      • KCI등재

        진청색의 동시개화성 절화 용담품종 ‘스카이호프’ 육성

        서종택,류승열,권영석,장석우,최창학,성문석 한국자원식물학회 2018 한국자원식물학회지 Vol.31 No.1

        A new Gentiana spp. cultivar ‘Skyhope’ was bred by crossing between ‘Jinbu-4 line’ with violet blue (VB 95B) colored petals and ‘Jinbu-1 line’ with violet blue (VB 93B) petals in 2000 year. The superior line of ‘0013-9’ was selected in Daegwallyeong from 2001 to 2003 year, and growth and flower characterization were conducted from 2004 to 2007 year in field of Daegwallyeong and Jinbu of Pyeongchang, Gangwon-do, Namwon, Jeollabuk-do and Jeju Special Self-Governing-do. The flower showed violet blue (VB 96A) color at opening, the petal of flower have not spot and flower stem color was purple. Flowers was opening at the same time from bottom to upside. Plant height was 68.1 cm, and number of flower stems per plant was 5.3 ea., number of flower node per stem is 5.9 ea., and Number of flowers per stem was 32.2 ea.. The flowering of ‘Skyhope’ cultivar was bloomed from the middle of July in Daegwallyeong and the later of July in Jinbu, Pyeongchang, Kangwon-do and the early of July in Namwon, Jeollabuk-do and the later of July in Jeju Special Self-Governing-do. ‘Skyhope’ cultivar can be used for cut flower. Key words - Breeding, Cut flower, Flower color, Flowering, Selection 용담 신품종 ‘스카이호프(Skyhope)’는 청색 꽃을 가진 가진Jinbu-1와 Jinbu-4호를 2000년에 교배하여 선발하였다. 화색은 진한 청색(VB 96A)으로 ‘횡계1호(VB96B)’보다 진했으며, 꽃잎에 반점이 없다. 꽃대 줄기는 자주색을 띠며 잎 모양은 피침형이다. 꽃은 밤에 반폐쇄형이고 위와 아래에서 거의 동시 개화하는 특성을 가지고 있다. 초장은 68.1 cm 정도이고, 화경수도 5.3 개로 적었으며, 화단수와 화수는 각각 5.9개, 32.2개로 나타났다. 개화는 7월 상순부터 하순까지 하였으며, 전 지역에서 ‘횡계1호’보다 15-20일 정도 빠르게 피었다.

      • KCI등재후보

        식용꽃의 색상과 영양성분의 관계 연구

        최지은 ( Choi Ji Eun ),박찬혁 ( Park Chan Hyuk ) 한국화예디자인학회 2017 한국화예디자인학 연구 Vol.37 No.-

        As people`s interest in edible flowers increases, studies to prove the functions through analysis of nutritional elements have been continued. However, most of the studies analyze contents of some edible flowers based on specific nutritional elements, or analyze their elements, staying in fragmentary analysis. Therefore, it is not easy to judge the relations of each nutritional elements or the similarity of edible flowers. In this study, the relations between edible flowers of various kinds and colors and nutritional elements were analyzed with three methods. First, the study distinguished major functions of edible flowers through correlation of various nutritional elements. Next, through pair analysis, the dimensional relations between edible flowers and nutritional elements were visualized, and through group analysis, the relations and similarity between colors of edible flowers and nutritional elements were identified. The result of this study revealed that a primula is an excellent cancer-fighting property, and a snapdragon has a good anti-oxidative component. Especially, a red primula showed overall good distribution in both cancer-fighting property and anti-oxidative component. Meanwhile, pansy, viola, snapdragon, garden nasturtium and marigold except primula showed similarity of nutritional elements among similar colors instead of same kinds of flowers. In addition, yellow color flowers mostly have anti-oxidative components, and purple color flowers have cancer-fighting elements. The significance of this study is that it suggested a new analysis method on edible flowers and nutritional elements. Especially, it is meaningful in that it suggested the possibility of analyzing the relations and similarity of colors and nutritional elements in new perspectives.

      • KCI등재후보

        컬러테라피로부터 영감을 받은 전시 ‘EXIT’의 창작에 관한 연구

        최은빛,유택상 한국화예디자인학회 2018 한국화예디자인학 연구 Vol.38 No.-

        This study is about the creation of flower artworks applicable as a flower therapy so that the people with psychological problems like stress, depression, anxiety or nervousness could get emotional healing effects through the appreciation of the artworks made of natural materials such as flowers and plants and with natural colors. The study started with the investigation of the colors, flower therapies and of how to express illumination and its effects through various media examples. Researching various cases of psychotherapy programs and therapy techniques, the researcher focused on the color therapy, which has been actively applied in various fields as a method of stimulating and healing emotions through the inherent energy of color. The researcher thought that the natural color of the plant could provide positive effect on humans and that it might provide healing effect on human mind. So the researcher created the flower artworks on the purpose of producing that effect. In the process, the researcher applied an experimental method to enhance the effect of color using color lighting as a way to maximize color. In appling the methodological approaches for maximization of the effect, the type of works were classified into four groups such as ‘work form’, ‘color of plant material’, ‘method of lighting’ and ‘color of illumination’. And individual artworks were planned and designed concerning those classifications. Based on such plans, the researcher created a series of works and held an exhibition. The theme of the exhibition was ‘escape from everyday life’ meaning the escapement from the psychological problems of modern people. The researcher created five flower artworks: ‘exodus’, ‘intoxication’, ‘hallucination’, ‘imbuement’ and ‘stare’. The significance of the study could be found in the experimental trial of creation and exhibition of floral artworks focusing on the therapeutic effect of color and lighting with the intention of providing emotional 96 한국화예디자인학 연구 제38집healing to the viewer living in contemporary world with some of psychological problems. 본 연구는 오늘날 현대인이 겪는 스트레스나 우울증과 같은 심리적문제들에 대한 치료적 대안으로서 컬러테라피를 선택하여, 식물소재를중심으로 화예 창작을 행하고 이를 감상하도록 함으로써 감상자에게 감성적 치유를 도모하고자 기획된 플라워테라피 화예 작품의 창작에 관한연구이다. 연구 초기에 컬러와 플라워테라피의 전반적인 개념을 조사하고, 조명의 표현방법과 그 효과를 여러 매체 사례를 통해 연구하였다. 그 과정에서 정신의학뿐만 아니라 여러 심리치료 프로그램이나 테라피 등이 개발되어 있고, 각종 테라피 중에서 컬러테라피는 컬러가 가지는 고유의 에너지를 통해 감성을 자극하여 치유하는 방법으로서 여러 방면에서 활발하게 적용되고 있음을 발견하였다. 연구자는 여러 컬러테라피의 방법 가운데 플라워테라피의 특수성 즉, 식물이 갖고 있는 자연의 색은 사람에게 긍정적인 영향을 준다는 것과 이를 통하여 사람의 마음을 치유할 수있다는 점에 착안하여, 감상자에게 치유 경험을 제공하는 화예작품을 창작하였다. 그 과정에서 색감을 더욱 극대화 시킬 수 있는 방법으로 컬러조명을 사용하여 색의 효과를 강화하는 실험적인 방법을 적용하였다. 효과적인 작품의 기획을 위해서 작품의 유형을 ‘작품형태’, ‘식물소재의 컬러’, ‘조명의 표현방법’, ‘조명의 컬러’의 4가지 그룹으로 분류하였고, 이들 유형 요소의 상호 결합을 통해 개별적 작품의 기획을 행하였다. 이러한 기획을 바탕으로 일련의 작품을 창작하여 전시회를 개최하였는데주제는 현대인이 일상으로부터 겪는 심리적 문제로부터의 탈출이라는 뜻으로 ‘일상탈출’이라고 정하였고, ‘벗어나다’, ‘취하다’, ‘꿈꾸다’, ‘물들다’, ‘바라보다’의 총 다섯 가지 화예 작품을 창작하였다. 본 연구의 의의는 현대인이 겪는 심리적 문제들에 대한 치료적 대안으로 컬러와 조명의 치료적 효과에 집중한 화예 작품의 창작과 전시를통해 감상자에게 감성적 치유를 도모하고자 하는 의도를 가치고 효과 및기능을 고려한 화예창작의 실험적 시도를 행한 점에서 찾을 수 있겠다.

      • KCI등재

        Genetic and molecular regulation of flower pigmentation in soybean

        Jagadeesh Sundaramoorthy,박규태,이정동,김정회,서학수,송종태 한국응용생명화학회 2015 Applied Biological Chemistry (Appl Biol Chem) Vol.58 No.4

        Flower color is one of the key traits, which has been widely considered for genetic studies on soybean. A variety of flower colors, such as dark purple, purple, purple blue, purple throat, magenta, pink, near white, and white, has been identified in cultivated soybean (Glycine max). Out of the 19,649 soybean accessions deposited in the United States Department of Agriculture-Germplasm Resources Information Network database, 67 % have purple flowers, 32 % have white flowers, and merely 1 % have flowers with different colors. In contrast, almost all accessions of wild soybean (Glycine soja) have only purple flowers. Flavonoids, mainly anthocyanins, are the most common pigments contributing to flower coloration in soybean. In the recent decades, the flavonoid biosynthesis pathway for anthocyanins has been well established, and some of the genes controlling flower color in soybean have been identified and characterized. Flower pigmentation of soybean is mainly controlled by six independent loci (W1, W2, W3, W4, Wm, and Wp) along with the combination of various other factors such as anthocyanin structure, vacuolar pH, and co-pigments. In this review, we summarize the current status of genetic and molecular regulation of flower pigmentation in cultivated and wild varieties of soybean.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼