RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        딥러닝 기술이 가지는 보안 문제점에 대한 분석

        최희식,조양현 한국융합학회 2019 한국융합학회논문지 Vol.10 No.5

        본 논문에서는 딥러닝 기술이 인터넷과 연결된 다양한 비즈니스 분야에 새로운 형태의 비즈니스 업무에 활용할 수 있도록 보안에 관한 문제점을 분석하고자 한다. 우선 딥러닝이 비즈니스 영역에 보안 업무를 충분히 수행하기 위해서 는 많은 데이터를 가지고 반복적인 학습을 필요하게 된다. 본 논문에서 딥러닝이 안정적인 비즈니스 보안 업무를 완벽하 게 수행할 수 있는 학습적 능력을 얻기 위해서는 비정상 IP패킷에 대한 탐지 능력과 정상적인 소프트웨어와 악성코드를 탑재하여 감염 의도를 가지고 접근하는 공격을 탐지해낼 수 있는 인지 능력을 갖추고 있는지를 분석하였다. 이에 본 논문에서는 인공지능의 딥러닝 기술이 시스템에 접근하여 문제의 비즈니스 모델을 안정적으로 수행할 수 있게 하기 위해서는 시스템내의 비정상 데이터를 추출해 내고 시스템 데이터 침해를 구분해 낼 수 있는 수학적 역할의 문제점을 보완하기 위해 새로운 IP에 대한 세션 및 로그 분석을 수행할 수 있도록 보안 엔진이 탑재된 딥러닝 기술을 개발하여 비즈니스 모델에 적용시켜서 취약점을 제거하여 비즈니스 업무 능력을 향상시키도록 문제적 방안을 비교 분석하였다. In this paper, it will analyze security problems, so technology’s potential can apply to business security area. First, in order to deep learning do security tasks sufficiently in the business area, deep learning requires repetitive learning with large amounts of data. In this paper, to acquire learning ability to do stable business tasks, it must detect abnormal IP packets and attack such as normal software with malicious code. Therefore, this paper will analyze whether deep learning has the cognitive ability to detect various attack. In this paper, to deep learning to reach the system and reliably execute the business model which has problem, this paper will develop deep learning technology which is equipped with security engine to analyze new IP about Session and do log analysis and solve the problem of mathematical role which can extract abnormal data and distinguish infringement of system data. Then it will apply to business model to drop the vulnerability and improve the business performance.

      • KCI등재

        딥러닝 관련 발명의 특허법상 보호 방안에 대한 연구

        전용철(Jun, Yong-Cheul) 동아대학교 법학연구소 2020 東亞法學 Vol.- No.86

        딥러닝 기술은 컴퓨터가 사물 등을 구분하기 위한 개념을 가지기 위해 ‘학습’을 수행하며, ‘학습’을 수행하기 위한 학습 모델이 가지는 구조가 깊은 것을 특징으로 한다. 딥러닝 기술은 인간이 개념을 받아들이기 위한 신경적 구조와 활동을 컴퓨터 기술에 접목한 신경망 기술을 기반으로 한다. 최근 그래픽 카드 등 하드웨어의 연산처리 능력이 높아지고 신경망 기술의 이론적 뒷받침이 이루어지면서 딥러닝 기술의 성과가 두드러지게 나타나게 되었다. 본 논문에서는 딥러닝 기술이 가지는 특성을 파악하기 위해 딥러닝 기술에 관한 변천과 주요 딥러닝 기술에 대한 내용 및 이와 관련된 특허권들의 청구범위를 살펴보았다. 또한, 본 논문에서는 딥러닝 기술이 가지는 특성을 감안하여 딥러닝 모델 구조가 변경된 경우와 기존 딥러닝 모델이 특유 목적에 맞게 접목된 경우로 구분하여 딥러닝 관련 발명의 특허 등록 가능성 확보 방안을 검토하였으며, 특허 등록 후 침해 주장 시 입증 용이성을 확보하기 위한 실무적 방안에 대해 검토하였다. 딥러닝 기술과 관련한 발명의 경우 발명의 성립성과 진보성 요건 등 특허성 요건을 판단함에 있어서 컴퓨터 관련 발명의 일종으로 취급될 수 있다. 최근 컴퓨터 관련 발명의 특허 적격성 판단과 관련하여 미국에서의 Alice 판결 등 주요 판례가 주목받고 있고 이에 따라 미국과 우리나라에서의 심사기준에도 변동이 있어 본 논문에서는 컴퓨터 관련 발명의 특허 적격성 판단에 대한 미국 판례의 변천을 살펴본 후 우리나라의 특허법 규정 및 2019년 3월 개정된 특허청의 특허․실용신안 심사기준을 검토하였다. Deep learning is a technology to perform “learning” so that computers can adopt concepts to distinguish objects and the like. Deep-learning technology is characterized in that the structures of learning models for performing “learning” are “deep”. Deep-learning technology is based on neural-network technology in which neural structures and activities that enable human beings to accommodate concepts are grafted onto the computer technology. Recently, neural network technology has been underpinned by theory owning to the increased operational processing capacity of hardware units such as graphics cards, and remarkable performance of deep-learning technology has been exhibited. In order to understand the properties of deep-learning technology, changes in deep-learning technology, major aspects of deep-learning technology, and the claims of patented inventions relating to deep-learning technology are reviewed in this paper. Also, considering the properties of deep-learning technology, cases are divided into cases where deep-learning model structures are changed and cases where conventional deep-learning models are grafted onto deep-learning technology so as to comply with specific objectives. On this basis, how to secure the patentability of deep-learning-related inventions is reviewed in this paper, and how to easily demonstrate patent infringement after the deep-learning-related inventions are patented is also reviewed in practical terms. In the case of deep-learning-related inventions, they may be handled as a kind of computer-related inventions when the patentability requirements thereof are determined in terms of whether the subject matters thereof establishes inventions and they meet inventiveness requirements, etc.. Recently, with respect to the patent eligibility determination of computer-related inventions, important precedents including the Alice Corp. judgment in the United States have drawn attention, and examination guidelines in the United States and Korea have changed accordingly. In this regard, in this paper I review changes in US precedents on patent eligibility determination of computer-related inventions, and then review the Korean Patent Act and patent and utility model examination guidelines, which were revised in March 2019 by the Korean Intellectual Property Office.

      • KCI등재

        데이터 분석적 사고력 향상을 위한 딥러닝 기반 학습 시스템 개발 연구

        이영호,구덕회 한국정보교육학회 2017 정보교육학회논문지 Vol.21 No.4

        본 연구의 목적은 학습자의 데이터 분석적 사고력 향상을 위한 딥러닝 기반 학습 시스템 개발 연구이다. 연구의 내용은 다음과 같다. 첫째, 데이터 분석적 사고력 향상을 위해 발견학습 모형에 딥러닝 기법을 적용하였다. 이는 데이터의 관계를 나타내주는 모델을 딥러닝 기법을 사용하여 생성하고, 새로운 데이터를 이 모델에 적용하여 데이터를 분석하는 과정을 경험할 수 있는 학습 방법이다. 둘째, 이 학습 방법에 따른 수업을 위한 딥러닝 기반 학습 시스템을 개발하였다. 학습자가 입력한 데이터를 딥러닝 기법을 사용하여 데이터의 모형을 생성하고, 이 모델을 적용할 수 있는 시스템을 개발하였다. 딥러닝을 적용한 발견학습 및 시스템 설계 연구는 데이터의 중요성이 더욱 커지는 미래 사회에서 학습자의 데이터 분석적 사고력을 향상시킬 수 있는 새로운 접근이 될 것으로 기대한다. The purpose of this study is to develop a deep learning based learning system for improving learner's data analytical thinking ability. The contents of the study are as follows. First, deep learning was applied to the discovery learning model to improve data analytical thinking ability. This is a learning method that can generate a model showing the relationship of given data by using the deep learning method, then apply the model to new data to obtain the result. Second, we developed a deep learning based system for DBD learning model. Specifically, we developed a system to generate a model of data using the deep learning method and to apply this model. The research of deep learning based learning system will be a new approach to improve learner's data analytical thinking ability in future society where data becomes more important.

      • KCI등재

        SystemC 기반 스토리지와 버퍼 및 딥러닝 가속기 시뮬레이터 시스템 구현

        이재빈,김건명,김진영,임승호 한국차세대컴퓨팅학회 2021 한국차세대컴퓨팅학회 논문지 Vol.17 No.6

        최근 IoT 시스템에서 엣지 디바이스를 이용한 데이터 저장 및 분산 처리 연산을 수행하기 위해서 다양한 연구가 진 행되고 있다. 인공지능 추론 연산도 그중 하나로써 임베디드 장치에서 인공지능 연산을 수행하기 위해서 소프트웨어 또는 하드웨어 레벨에서 많은 연구가 진행 중이다. 특히, 하드웨어 레벨에서 임베디드 프로세서나 임베디드 GPU를 이용한 연산 처리는 한계가 있어서 독립적인 하드웨어 딥러닝 가속기를 추가하는 추세이다. 이러한 딥러닝 가속기는 복잡한 신경망 연산을 하드웨어에서 독립적으로 수행하기 위해서 많은 데이터 저장 및 이동이 필요하며, 내부적으로 는 반복 병렬 연산을 수행하기 때문에 내부 저장 시스템 및 버퍼 구조와 데이터 이동 경로에 대한 분석과 최적화가 필요하다. 딥러닝 가속기의 데이터 사용성에 대한 분석을 통하여 딥러닝 가속기의 최적화 설계를 돕기 위해서, 본 논문에서는 RISC-V 기반 가상 플랫폼에서 SystemC 기반으로 ESL 수준에서 딥러닝 가속기와 낸드 플래시 메모 리 시스템으로 구성된 가상 엣지 디바이스 플랫폼을 제공하고, RISC-V 기반 가상 플랫폼에서 딥러닝 가속기를 이 용한 응용 프로그램을 실행하고 분석하는 환경을 제공하였다. 구현한 딥러닝 가속기 시뮬레이터를 이용해서 딥러닝 가속기의 저장장치 및 내부 버퍼의 사용성과 딥러닝 연산에 따른 데이터 이동량 및 버퍼링 효과를 분석할 수 있는 기반을 마련하였다. Recently many researches are being conducted to perform data distributed processing with embedded edge devices in IoT systems, and artificial intelligence inference is one of them. Many studies are underway at the software or hardware level to perform artificial intelligence operations in embedded systems. In particular, the hardware-supported deep learning operations, such as GPU, in embedded system are limited, so a hardware deep learning accelerator is considered to be added in the architecture. Since such a deep learning accelerator performs a lot of data storage and movement and iterative parallel operation internally to perform complex neural network computation, it is required to analyze and optimize a precise internal buffer and data movement path management for efficient design of deep learning accelerator. In this paper, to model and analyze a deep learning accelerator in a virtual platform based on RISC-V, a deep learning accelerator is designed and implemented at the ESL level based on SystemC as well as main memory and NAND flash controller, then the data movement with storage and buffering effect were analyzed and examined on the developed deep learning accelerator. Using the implemented deep learning accelerator simulator, the usability of the internal buffer of the deep learning accelerator and the data movement amount and buffering effect according to the deep learning operation can be analyzed.

      • KCI등재

        딥러닝 모델 설계를 위한 모델 패턴 추출 및 시각화

        박기선(Ki Sun Park),황경순(Kyoung Soon Hwang),이건명(Keon Myung Lee) 한국지능시스템학회 2019 한국지능시스템학회논문지 Vol.29 No.1

        최근 공개되고 있는 딥러닝 모델의 계층구조는 복잡한 형태를 갖는 경향을 보인다. 이러한 딥러닝 모델의 계층구조는 한눈에 파악하기 힘들고 재사용하기 힘들다는 어려움이 있다. 따라서 이 논문에서는 딥러닝 모델의 재사용과 가시화를 위해 복잡한 구조의 딥러닝 모델로부터 반복되는 계층을 추출하고, 모듈화하는 방법을 제안한다. 제안한 방법은 딥러닝 모델을 그래프 구조로 표현하고, 패턴 추출 과정에서 부분 그래프 마이닝 기법과 부분 패턴 마이닝 기을 단계적으로 거쳐 반복되는 패턴을 추출한다. 추가적으로, GUI 기반 에디터를 구현하여 복잡한 딥러닝 모델의 구조를 추상화함으로써 모델의 계층구조를 단순하게 표현할 수 있을 뿐만 아니라 기존 딥러닝 모듈의 효율적인 재사용이 가능하도록 지원한다. Recent deep learning models tend to have a complex architecture. But it is hard for developers to grasp such hierarchical structure of the deep learning models and it is also difficult to reuse existing deep learning models. To solve these problems, we propose a method of extracting and modularizing repeated layers from a deep learning model for model reuse and visualization. Each repeating pattern is extracted by subgraph mining and frequent pattern mining. We also propose the GUI based editor which not only displays more simplified structure by abstract of original structure but also provides deep learning model reuse.

      • KCI등재

        회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석

        조민호(Min-Ho Cho) 한국전자통신학회 2023 한국전자통신학회 논문지 Vol.18 No.2

        인공지능 기법 중에서 딥러닝은 많은 곳에서 사용되어 효과가 입증된 모델이다. 하지만, 딥러닝 모델이 모든 곳에서 효과적으로 사용되는 것은 아니다. 이번 논문에서는 회귀분석과 딥러닝 모델의 비교를 통하여 딥러닝 모델이 가지는 한계점을 보여주고, 딥러닝 모델의 효과적인 사용을 위한 가이드를 제시하고자 한다. 추가로 딥러닝 모델의 최적화를 위해 사용되는 다양한 기법 중, 많이 사용되는 데이터 정규화와 데이터 셔플링 기법을 실제 데이터를 기반으로 비교 평가하여 딥러닝 모델의 정확성과 가치를 높이기 위한 기준을 제시하고자 한다. Among artificial intelligence techniques, deep learning is a model that has been used in many places and has proven its effectiveness. However, deep learning models are not used effectively in everywhere. In this paper, we will show the limitations of deep learning models through comparison of regression analysis and deep learning models, and present a guide for effective use of deep learning models. In addition, among various techniques used for optimization of deep learning models, data normalization and data shuffling techniques, which are widely used, are compared and evaluated based on actual data to provide guidelines for increasing the accuracy and value of deep learning models.

      • KCI등재

        딥러닝을 위한 영역기반 합성곱 신경망에 의한 항공영상에서 건물탐지 평가

        이대건,조은지,이동천 한국측량학회 2018 한국측량학회지 Vol.36 No.6

        딥러닝은 인간의 학습 및 인지능력을 닮은 인공지능을 실현하기 위해 여러 분야에서 활용하고 있으며, 높은 사양 의 컴퓨팅 파워가 요구되고 연산 시간이 많이 소요되는 복잡한 구조의 인공신경망에 의한 딥러닝은 컴퓨터 사양이 향상됨에 따라 성능이 개선된 다양한 딥러닝 모델이 개발되고 있다. 본 논문의 주요 목적은 상의 딥러닝을 위한 합성곱 신경망 중에서 최근에 FAIR (Facebook AI Research)에서 개발한 Mask R-CNN을 이용하여 항공상에서 건물을 탐지하고 성능을 평가하는 것이다. Mask R-CNN은 역기반의 합성곱 신경망으로서 픽셀 정확도까지 객 체를 의미적으로 분할하기 위한 딥러닝 모델로서 성능이 가장 우수한 것으로 평가받고 있다. 딥러닝 모델의 성능은 신경망 구조뿐 아니라 학습 능력에 의해 결정된다. 이를 위해 본 논문에서는 모델의 학습에 이용한 상에 다양한 변화를 주어 학습 능력을 분석하으며, 딥러닝의 궁극적 목표인 범용화의 가능성을 평가하다. 향후 연구방안으 로는 상에만 의존하지 않고 다양한 공간정보 데이터를 복합적으로 딥러닝 모델의 학습에 이용하여 딥러닝의 신 뢰성과 범용화가 향상될 것으로 판단된다. DL (Deep Learning) is getting popular in various fields to implement artificial intelligence that resembles human learning and cognition. DL based on complicate structure of the ANN (Artificial Neural Network) requires computing power and computation cost. Variety of DL models with improved performance have been developed with powerful computer specification. The main purpose of this paper is to detect buildings from aerial images and evaluate performance of Mask R-CNN (Region-based Convolutional Neural Network) developed by FAIR (Facebook AI Research) team recently. Mask R-CNN is a R-CNN that is evaluated to be one of the best ANN models in terms of performance for semantic segmentation with pixel-level accuracy. The performance of the DL models is determined by training ability as well as architecture of the ANN. In this paper, we characteristics of the Mask R-CNN with various types of the images and evaluate possibility of the generalization which is the ultimate goal of the DL. As for future study, it is expected that reliability and generalization of DL will be improved by using a variety of spatial information data for training of the DL models.

      • KCI등재

        최적화 알고리즘과 학습률 적용에 따른흉부 X선 영상 딥러닝 분류 모델 성능평가

        김지율(Ji-Yul Kim),정봉재(Bong-Jae Jeong) 한국방사선학회 2024 한국방사선학회 논문지 Vol.18 No.5

        최근에는 딥러닝을 이용한 의료영상 분야의 자동진단 솔루션에 대한 연구 및 개발이 활발하게 진행되고 있다. 본 연구에서는 컨볼루션 인공 신경망 기반의 딥러닝 모델인 Inception V3를 이용하여 흉부 X선 영상의 폐렴 유무 분류에 대한 신속하면서도 정확한 분류 딥러닝 모델링을 찾고자 하였다. 이러한 이유로 딥러닝 모델링에 최적화알고리즘 AdaGrad, RMS Prop, Adam을 적용한 후 학습률을 0.01과 0.001로 선택적으로 적용하여 딥러닝 모델링을 구현한 후 흉부 X선 영상 폐렴 유무 분류에 대한 성능을 비교 평가하였다. 연구결과 분류 모델의 성능과 인공신경망의 학습상태를 평가할 수 있는 검증 모델링에서는 학습률 0.001과 최적화 알고리즘으로 Adam을 적용한 경우 흉부 X 선 영상의 폐렴 유무 분류에 대한 딥러닝 모델링의 성능이 가장 우수하다는 것을 알 수 있었다. 그리고 최근 딥러닝 모델링의 설계 시 최적화 알고리즘으로 주로 적용이 되는 Adam의 경우 학습률 0.01과 0.001의 선택적인 적용에서 우수한 성능 및 우수한 Metric 결과를 나타내었다. 테스트 모델링에 대한 Metric 평가에서는 학습률 0.1을 적용한 AdaGrad 가 가장 우수한 결과를 나타내었다. 이러한 결과를 통하여 이진법 기반의 의료영상 분류 딥러닝 모델링의 설계 시, 신속하면서도 정확한 성능을 기대하기 위해서는 최적화 알고리즘으로 Adam을 적용하는 경우에는 학습률 0.01, AdaGrad를 적용하는 경우에는 학습률은 0.01을 우선적으로 적용할 것을 권고한다. 그리고 향후 유사 연구 시, 본 연구 결과는 기초자료로 제시될 것이라 사료되며 딥러닝을 이용한 의료영상의 자동 진단 목적의 헬스 · 바이오 산업에서 유용한 자료로 활용되기를 기대한다. Recently, research and development on automatic diagnosis solutions in the medical imaging field using deep learning are actively underway. In this study, we sought to find a fast and accurate classification deep learning modeling for classification of pneumonia in chest images using Inception V3, a deep learning model based on a convolutional artificial neural network. For this reason, after applying the optimization algorithms AdaGrad, RMS Prop, and Adam to deep learning modeling, deep learning modeling was implemented by selectively applying learning rates of 0.01 and 0.001, and then the performance of chest X-ray image pneumonia classification was compared and evaluated. As a result of the study, in verification modeling that can evaluate the performance of the classification model and the learning state of the artificial neural network, it was found that the performance of deep learning modeling for classification of the presence or absence of pneumonia in chest X-ray images was the best when applying Adam as the optimization algorithm with a learning rate of 0.001. I was able to. And in the case of Adam, which is mainly applied as an optimization algorithm when designing deep learning modeling, it showed excellent performance and excellent metric results when selectively applying learning rates of 0.01 and 0.001. In the metric evaluation of test modeling, AdaGrad, which applied a learning rate of 0.1, showed the best results. Based on these results, when designing deep learning modeling for binary-based medical image classification, in order to expect quick and accurate performance, a learning rate of 0.01 is preferentially applied when applying Adam as an optimization algorithm, and a learning rate of 0.01 is preferentially applied when applying AdaGrad. I recommend doing this. In addition, it is expected that the results of this study will be presented as basic data during similar research in the future, and it is expected to be used as useful data in the health and bio industries for the purpose of automatic diagnosis of medical images using deep learning.

      • KCI등재

        딥러닝 자유호흡기법의 간 확산강조영상에서 b-value 별 여기횟수에 따른 겉보기확산계수 지도의 정확도 분석

        김도희,김용주,김건영,이성주,신헌 대한자기공명기술학회 2024 대한자기공명기술학회지 Vol.34 No.3

        본 연구에서는 호흡동조화기법의 대안으로 딥러닝 자유호흡기법에서 b-value 별 겉보기확산계수 값을 평가하고 확산강조영상과 겉보기확산계수 지도의 해부학적 일치성을 분석하여 적절한 여기횟수 값을 알아보고자 하였다. 연구방법은 2023년 7월부터 2024년 1월까지 간 자기공명영상 검사가 의뢰된 성인 남녀 35명을 대상으로 하였고 사용장비는 Magnetom Skyra 3.0T(Siemens, Germany)를 이용하였다. 자유호흡기법의 비교를 위해 b-value 50, 400, 800(s/mm2)의 여기횟수를 각각 딥러닝 호흡동조화기법에서 2,3,4으로 딥러닝을 이용하지 않은 일반 자유호흡기법에서 4,6,8으로 검사하였다. 딥러닝을 추가한 일반 자유호흡기법에서는 1,2,3 여기횟수, 2,3,4 여기횟수, 3,5,6 여기횟수, 4,6,8 여기횟수로 변화하였다. 연구 결과 딥러닝 자유호흡기법에서 간의 좌엽과 우엽, 담낭의 평균 겉보기확산계수 값은 딥러닝 호흡동조화기법과 비교하여 모두 통계적 유의성을 확인하였다. 한편 정성적 평가의 해부학적 일치성을 분석한 결과 딥러닝 자유호흡기법의 3,5,6 여기횟수와 4,6,8 여기횟수에서 가장 높은 점수를 얻었으며 검사 시간에서는 딥러닝 호흡동조화기법과 비교하여 약 51%, 40% 감소하였다. 따라서 간 진단에 있어 딥러닝 자유호흡기법에서 b-value 별 적절한 여기횟수 값을 이용한다면 겉보기확산계수 지도의 정확도 유지와 함께 검사시간을 감소시킬 수 있어 임상적으로 유용한 검사가 될 것으로 사료된다. This study evaluated the apparent diffusion coefficient value by varying the number of excitation for b-values in deep learning for a free breathing technique as an alternative to a prospective acquisition correction technique. Thirty-five patients examination from July 2023 to January 2024, using the Magnetom Skyra 3.0T. DWI was performed using FB with DL . The b-values were fixed at 50, 400, and 800 and the NEX variations were 1,2,3 NEX, 2,3,4 NEX, 3,5,6 NEX, and 4,6,8 NEX. The ADC value of the left and right lobe liver and gallbladder displayed similar result s to PACE. Misregistration of 3,5,6 and 4,6,8 NEX in the FB with DL yielded the highest scores. Respectively, the scan time was reduced by approximately 51% and 40% for PACE with DL. FB with DL using NEX for b-values effectively reduced the scan time without any deterioration in ADC Map accuracy. Therefore, this technique is a clinically feasible examination.

      • KCI등재

        확장형 소스코드 템플릿을 활용한 딥러닝 실습

        이승호 한국정보통신학회 2023 한국정보통신학회논문지 Vol.27 No.11

        딥러닝(deep learning)은 머신러닝(machine learning)의 하위 카테고리로 인공신경망 방법론 중 하나이다. 새로운 데이터의 생성과 컴퓨터의 고속처리 능력 향상으로 딥러닝 기술은 더욱 주목받게 되었고 특히 비정형 데이터 처리 및 분석에 뛰어난 능력을 보여왔다. 다양한 영역에서 데이터 분석에 대한 수요가 증가하면서 딥러닝 교육에 대한 요구가 높아지고 있다. 그럼에도 불구하고 딥러닝 기술은 기법이 다양하며 프로그래밍 언어로 구현된 특성상 딥러닝 교육이 단기간에 체계적으로 이뤄지기 어려운 실정이다. 본 논문에서는 소스코드 템플릿을 사용하여 딥러닝 모델의 가장 밑바탕이 되는 완전계층(fully connected layers)으로 구성된 신경망에서 시작하여 가장 널리 사용되고 있는 딥러닝 기법 중 하나인 컨볼루션 신경망까지 확장성 있게 다루는 딥러닝 실습 교육 방법을 제안하고자 한다. 실제 강의운영 사례를 바탕으로 차시별 교육 내용 및 소스코드 템플릿을 본 논문에서 제공한다. As a subcategory of machine learning, deep learning is one of the artificial neural network methods. Thanks togeneration of new kinds of data and significant improvement in the data processing speed, deep learning technologieshave attracted considerable attention. Because data in various domains need to be processed and analyzed, the need fordeep learning education targeting is also increasing. However, it is difficult to provide them with systematic deeplearning education in a short period of time because there have been many algorithms and they are implemented in aprogramming language. This paper suggests an extendable pratice method which makes use of core sourse codetemplates that cover from simple neural network (NN) consisting of fully connected layers to convolutional neuralnetwork (CNN). Based on real cases of class operation, the lecture content per class session and the source codetemplates are provided in this paper.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼