RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental and Analytical Study of Eccentrically Braced Frames Combined with High-Strength Steel

        Shen Li,Yunhe Liu,JianBo Tian 한국강구조학회 2018 International Journal of Steel Structures Vol.18 No.2

        In the structure of high-strength steel composite eccentrically braced steel frames (HSS–EBFs), the links and braces are made of Q345 steel, while the non-energy-dissipation segments (columns and beams) are made of high-strength steel (HSS). HSS reduces the cross-section of the members and increases the economic effi ciency. Here, four groups of K-HSS–EBFs are designed by performance-based plastic design method in this paper, which includes 5-storey, 10-storey, 15-storey and 20-storey, and each group contain four diff erent link length (900, 1000, 1100 and 1200 mm). The cyclic test loading was applied to 1:2 scale three-storey K-type HSS–EBFs (K-HSS–EBFs) with shear links to investigate their seismic performance. The results indicate that the as-prepared K-HSS–EBF structure exhibits excellent bearing capacity, ductility, and energy dissipation. We also fi nd that the fracture of the link web in the second storey led to the degradation of the load-carrying capacity. The non-designated yield members remained in the elastic stage, whereas the links ultimately experience inelastic rotations, and thus dissipate the energy in the K-HSS–EBFs. Moreover, nonlinear pushover analyses and nonlinear dynamic analyses are conducted, and the loading capacity, link rotations, ductility, interstory drifts and failure mode under rare earthquake of all models are compared. The results indicate that K-HSS–EBFs with diff erent link length have similar deformation characteristic and failure mode under pushover analysis or rare earthquakes, and the interstory drifts, link rotations and ductility of HSS–EBFs are increased with rising the link length.

      • Research on Analysis Model of Soybean Straw Component

        Weizheng Shen,Jianbo Wang,Qingming Kong,Jing Guan,Jin Cui,Ziqing Liu 보안공학연구지원센터 2015 International Journal of Multimedia and Ubiquitous Vol.10 No.6

        To achieve the rapid detection of soybean straw component, the key lies in establishing a quantitative analysis model with higher prediction accuracy which is rapid, stable and reliable. In order to establish the optimal Near-infrared (NIR) analysis model of cellulose and hemicellulose content in soybean straw, this paper uses NIR transmission technology by applying interval Partial Least Squares (iPLS) on the optimization of characteristic spectrum range of cellulose and hemicellulose spectrum. During the optimized characteristic spectrum range, prediction models of Partial Least Squares Regression (PLSR) and the Back Propagation Neural Network (BPNN) are built in the cellulose and hemicellulose contents respectively. The results show that the best modeling band of the Cellulose content is 5615-5731cm-1, and the optimal coefficient of determination of prediction model, PredictionR2(P-R2) reaches 0.9179266; And the best modeling band of the hemicellulose content is 5615-5731cm-1 ,the P-R2 is 0.920407. After the selection of iPLS optimal band, the quantitative analysis model of cellulose and hemicelluloses established by adopting the PLSR and BP Neural Network is more concise and has higher prediction accuracy and faster data computing speed. It also provides a theoretical basis for the optimization of characteristic spectrum range for the design of small dedicated NIR analytical instruments.

      • KCI등재

        Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression

        Jingyuan Guan,Xiao Xiao,Shengjuan Xu,Fen Gao,Jianbo Wang,Tietao Wang,Yunhong Song,Junfeng Pan,Xihui Shen,Yao Wang 한국미생물학회 2015 The journal of microbiology Vol.53 No.9

        RpoS (σS), the stationary phase/stress σ factor, controls the expression of a large number of genes involved in cellular responses to a variety of stresses. However, the role of RpoS appears to differ in different bacteria. While RpoS is an important regulator of flagellum biosynthesis, it is associated with biofilm development in Edwardsiella tarda. Biofilms are dense communities formed by bacteria and are important for microbe survival under unfavorable conditions. The type VI secretion system (T6SS) discovered recently is reportedly associated with several phenotypes, ranging from biofilm formation to stress sensing. For example, Vibrio anguillarum T6SS was proposed to serve as a sensor for extracytoplasmic signals and modulates RpoS expression and stress response. In this study, we investigated the physiological roles of RpoS in Yersinia pseudotuberculosis, including bacterial survival under stress conditions, flagella formation, biofilm development and T6SS expression. We found that RpoS is important in resistance to multiple stressors–including H2O2, acid, osmotic and heat shock–in Y. pseudotuberculosis. In addition, our study showed that RpoS not only modulates the expression of T6SS but also regulates flagellum formation by positively controlling the flagellar master regulatory gene flhDC, and affects the formation of biofilm on Caenorhabditis elegans by regulating the synthesis of exopolysaccharides. Taken together, these results show that RpoS plays a central role in cell fitness under several adverse conditions in Y. pseudotuberculosis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼