RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 분절 특징 HMM을 이용한 영어 음소 인식

        윤영선,Yun, Young-Sun 한국정보과학회 2002 정보과학회논문지 : 소프트웨어 및 응용 Vol.29 No.3

        본 논문에서는 여러 프레임 특징으로 표현되는 분절 특징(segmental feature) 표현 방법을 제안하고, HMM 개념 위에서 음향학적 모델과 그 알고리즘을 개발하여 HMM의 약점으로 지적되는 독립관측 가정을 완화시키고자 한다. 제안된 특징 표현은 단일 프레임 특징이 음성 신호의 시간적 동적 특성 (temporal dynamics)을 제대로 표현하지 못하기 때문에, 여러 프레임을 이용하여 음성 특징을 표현하도록 한다. 분절 특징은 다항식의 회귀 함수(polynomial regression function)에 의하여 관측 벡터의 궤적으로 표현되고, 이 특징을 패턴 분류에 사용하기 위하여 음성 신호의 궤적을 효과적으로 표현하는 분절 HMM(segmental HMM)을 이용한다. SHMM은 상태에서의 관측 확률을 외적 분절 변이와 내적 분절 변이로 세분하며, 외적 분절 변이는 장기적인 변화를, 내적 분절 변이는 단기적인 변화를 나타낸다. 음향학적 모델에서 분절 특성을 고려하기 위하여 외적 분절 변이는 분절의 확률 분포로 표현하고, 내적 분절 변이는 궤적의 추정 오차로 표현하도록 SHMM을 수정한 분절 특징 HMM(SFHMM; segmental-feature HMM)을 제안한다. SFHMM에서는 분절의 관측 확률을 분절 우도와 궤적의 추정 오차의 관계로써 표현하며, 추정오차는 특정 상태에서의 분절의 우도에 대한 가중치로 고려될 수 있다. 제안된 방법의 유효성과 분절 특징의 특성을 살펴보기 위하여 TIMIT 자료를 이용하여 몇 가지 실험을 하였다. 이들 실험 결과에서, 제안된 방법이 기존의 HMM보다 매개 변수가 많더라도, 성능의 향상과 제안된 특징이 유연하고 정보를 많이 가진다는 점에서 의미가 있다고 하겠다. In this paper, we propose a new acoustic model for characterizing segmental features and an algorithm based upon a general framework of hidden Markov models (HMMs) in order to compensate the weakness of HMM assumptions. The segmental features are represented as a trajectory of observed vector sequences by a polynomial regression function because the single frame feature cannot represent the temporal dynamics of speech signals effectively. To apply the segmental features to pattern classification, we adopted segmental HMM(SHMM) which is known as the effective method to represent the trend of speech signals. SHMM separates observation probability of the given state into extra- and intra-segmental variations that show the long-term and short-term variabilities, respectively. To consider the segmental characteristics in acoustic model, we present segmental-feature HMM(SFHMM) by modifying the SHMM. The SFHMM therefore represents the external- and internal-variation as the observation probability of the trajectory in a given state and trajectory estimation error for the given segment, respectively. We conducted several experiments on the TIMIT database to establish the effectiveness of the proposed method and the characteristics of the segmental features. From the experimental results, we conclude that the proposed method is valuable, if its number of parameters is greater than that of conventional HMM, in the flexible and informative feature representation and the performance improvement.

      • KCI등재

        은닉 마르코프 모델을 이용한 적응형 학습경로 생성에 관한 연구

        최현희(Hyunhee Choi),이윤지(Yunji Lee),이하윤(Hayun Lee) 한국자료분석학회 2023 Journal of the Korean Data Analysis Society Vol.25 No.2

        전 세계적인 COVID19의 영향으로, 비대면 학습에 대한 활용도가 높아지고 있다. 비대면 학습을 위해서는 효율성을 토대로 한 학습경로의 생성이 중요하다. 본 연구는 학생들이 수업에서 마주칠 수 있는 경험의 경로, 즉, 지식 개념(knowledge concept, KC) 을 순서대로 배열한 연결망으로 알려진 학습경로를 만드는 방법으로 hidden Markov model(HMM)을 소개하고, HMM을 이용하여 경로 예측의 정확도 향상을 목적으로 한다. 첫 단계로, 정확한 학습경로의 생성을 위하여 HMM 수행 전 least absolute shrinkage and selection operator(LASSO), random forest(RF)를 이용한 변수 선택(variable selection)을 수행한 후 변수 선택의 효과를 파악한다. 그리고 HMM을 이용해서 KC들의 그룹으로 만든 상위 개념들의 선후관계를 파악한 경우와 다른 후보 경로들과의 비교를 통하여 HMM을 활용하여 완성된 경로가 더욱 의미 있게 생성되었음을 입증한다. 실험을 위하여 AI-hub(https://aihub.or.kr/)에서 공유한 수학 학습데이터를 이용한 결과 LASSO, RF 등의 변수선택 방법을 이용하여 관계 쌍을 추려냈을 때 HMM의 성능이 월등히 좋아졌고, 상위 개념으로 이루어진 학습경로를 평가할 때 HMM을 활용한 경우가 다른 모형에 비해 모형적합도 면에서 훌륭하였다. Due to the global impact of COVID-19, the use of non-face-to-face learning is increasing. For non-face-to-face learning, it is important to create a learning path based on efficiency. This study introduces the hidden Markov model (HMM) as a method of creating a learning path known as a network in which knowledge concepts are arranged in order, that is, the path of experience that students may encounter in class. and it aims to improve the accuracy of path prediction by using a variable selection technique that includes least absolute shrinkage and selection operator (LASSO), and random forest (RF) before performing HMM. In addition, this study aims to show that the learning path based on higher-order concepts made of precedence relationships from HMM is more accurate than other candidate paths. As a result of using data shared by AI-hub (https://aihub.or.kr/), the performance of HMM when selecting relational pairs using LASSO, and RF was improved significantly, and the case of using HMM when evaluating the learning path consisting of higher concepts was excellent in terms of model goodness of fit compared to other models.

      • KCI등재

        은닉 마코프 모델 확률 보정을 이용한 음성 인식 성능 향상

        권태희,고한석 한국음향학회 2003 韓國音響學會誌 Vol.22 No.2

        본 논문에서는 인식 단위로서의 개개의 은닉 마코프 모델 (HMM: Hidden Markvo Model)에 대응하는 가중치를 도입하여 HMM출력 스코어는 HMM출력 확률과 HMM 가중치의 곱으로 표현된다고 가정하고 기존의 최소 분류 오류 훈련 방법과 유사하게 HMM 가중치를 반복적으로 훈련하는 방법을 제안하였다. 제안된 방법은 오인식 척도에 대해 차분 (delta) 계수를 정의하고 이를 이용하여 HMM 가중치를 반복하여 훈련하는 방법이다. 이러한 방법은 HMM 가중치의 합을 HMM 개수의 총합으로 제한함으로써 기존의 파라미터 추정 방법과 비터비 (Viterbi) 알고리즘에 큰 변화 없이 음성 인식에 효과적으로 적용될 수 있다. 제안된 방법은 기존의 분할 (segmental) 최소 분류 오류훈련 방법과 비교하여 추정하는 파라미터의 개수가 감소되었으며 훈련 모델의 최적 상태열을 이용한 경도 계산 과정이 포함되지 않음으로써 계산량을 효과적으로 단축할 수 있다. HMM가중치를 이용한 HMM기반의 음성 인식기의 성능 평가를 위해서 단독 숫자음 인식 실험을 실시하였다. 실험적 결과들은 HMM 확률 보정을 이용한 음성 인식 시스템이 베이스라인 시스템보다 음성 인식 성능이 더 우수함을 보여준다. 제안된 방법은 기존의 최소 분류 오류 훈련 방법에 비하여 구현하기 간편한 반면에 더욱 우수한 음성 인식 성능 향상을 보여준다. In this paper, assuming that the score of speech utterance is the product of HMM log likelihood and HMM weight, we propose a new method that HMM weights are adapted iteratively like the general MCE training. The proposed method adjusts HMM weights for better performance using delta coefficient defined in terms of misclassification measure. Therefore, the parameter estimation and the Viterbi algorithms of conventional 1:.um can be easily applied to the proposed model by constraining the sum of HMM weights to the number of HMMs in an HMM set. Comparing with the general segmental MCE training approach, computing time decreases by reducing the number of parameters to estimate and avoiding gradient calculation through the optimal state sequence. To evaluate the performance of HMM-based speech recognizer by weighting HMM likelihood, we perform Korean isolated digit recognition experiments. The experimental results show better performance than the MCE algorithm with state weighting.

      • KCI등재

        얼굴인증 방법들의 조명변화에 대한 견인성 비교 연구

        고대영,김진영,나승유,Ko Dae-Young,Kim Jin-Young,Na Seung-You 한국정보처리학회 2005 정보처리학회논문지B Vol.12 No.1

        본 논문은 얼굴인증 시스템 구현과 조명변화에 견인한 얼굴인증 방법들에 관한 연구에 초점을 둔다. 얼굴인증 시스템 구현을 위한 방법으로 PCA(Principal Component Analysis), GMM(Gaussian Mixture Models), 1차원 HMM(1 Dimensional Hidden Markov Models), 준 2차원 HMM(Pseudo 2 Dimensional Hidden Markov Models) 방법을 이용한다. 네 가지 다른 얼굴인증 방법들의 조명변화에 대한 성능비교 실험을 수행한다. 조명변화실험을 위해 얼굴이미지의 왼쪽에서 오른쪽으로 인공적인 조명효과(${\delta}=0,40,60,80$)를 준다. 얼굴특징벡터는 얼굴이미지에서 분할한 각 블록에 대한 2D DCT(2 Dimensional Discrete Cosine Transform) 계수를 이용하고 실험은 ORL(Olivetti Research Laboratory) 얼굴데이터베이스를 사용한다. 실험결과 모든 경우 조명변화 값이 커질수록 성능저하가 발생한다. 또한 조명변화가 없는 경우(${\delta}=0$) 준 2차원 HMM이 $2.54{\%}$, 1차원 HMM이 $3.18{\%}$, PCA가 $11.7{\%}$, GMM이 $13.38{\%}$의 EER(Equal Error Rate) 성능을 나타낸다. 조명변화가 없는 경우(${\delta}=0$) 1차원 HMM 방법이 PCA 방법보다 좋은 성능을 나타내지만 조명변화 ${\delta}{\geq}40$인 때에는 반대로 PCA 방법이 더 좋은 성능을 나타낸다. 마지막으로 준 2차원 HMM의 경우 조명변화에 관계없이 가장 좋은 EER성능을 나타낸다. This paper focuses on the study of the face authentication system and the robustness of fact authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as fellows; PCA(Principal Component Analysis), GMM(Gaussian Mixture Modeis), 1D HMM(1 Dimensional Hidden Markov Models), Pseudo 2D HMM(Pseudo 2 Dimensional Hidden Markov Models). Experiment results involving an artificial illumination change to fate images are compared with each other. Face feature vector extraction based on the 2D DCT(2 Dimensional Discrete Cosine Transform) if used. Experiments to evaluate the above four different fate authentication methods are carried out on the ORL(Olivetti Research Laboratory) face database. Experiment results show the EER(Equal Error Rate) performance degrade in ail occasions for the varying ${\delta}$. For the non illumination changes, Pseudo 2D HMM is $2.54{\%}$,1D HMM is $3.18{\%}$, PCA is $11.7{\%}$, GMM is $13.38{\%}$. The 1D HMM have the bettor performance than PCA where there is no illumination changes. But the 1D HMM have worse performance than PCA where there is large illumination changes(${\delta}{\geq}40$). For the Pseudo 2D HMM, The best EER performance is observed regardless of the illumination changes.

      • HMM과 신경망을 이용한 음성인식

        김수훈 부천대학 2001 論文集 Vol.22 No.-

        본 논문에서는 음성인식 기술분야에서 활발히 연구가 진행되고있는 HMM과 신경망 그리고 HMM과 신경망의 장점을 함께 사용할 수 있는 하이브리드 네트위크인 신경망 예측 HMM을 이용하여 단독 숫자음에 대한 인식성능을 비교·검토하였다. 실험은 (1)CHMM을 이용한 방법, (2)예측형 회귀신경망을 이용한 방법 (3)회귀신경망 예측 HMM을 이용한 방법으로 나누어 실시하였고, 각각의 실험에 대하여 상태수, 예측차수 및 중간층 유니트의 수의 변화에 따른 인식률의 변화를 검토하였다. 또한 문맥층에서 자기루프 계수를 두어 이전의 값들이 문맥층에 누적되도록 하였을 경우에 대한 인식률을 비교하였다. 실험결과 HMM이 가장 우수한 인식결과 나타내었고, 최적의 상태수, 예측차수 및 중간층 유니트의 수는 각 모델의 구조에 따라 차이가 났다. 전반적으로 Jordan망이 Elman망 보다 인식성능이 뛰어났으며, 자기루프계수에 대한 영향은 불규칙하게 나타났다. 그리고 회귀신경망 HMM은 하이브리드 네트워크임에도 HMM의 인식성능은 상회하지는 못하였다. In this paper, we investigate the recognition ability of HMMs, Predictive Neural Networks, and Recurrent Neural Predictive HMMs for the isolated digits. In the experiments, we changed the state number, prediction order, and the number of hidden units. Also we accumulated previous values with self-loop coefficient in its context. As result of the experiments, HMM has the best recognition ability when the state number is 5. In general, the results of experiments show that the optimum state number, prediction order, the number of hidden units, and self-loop coefficient differently responded according to the structure of HMMs and recurrent neural networks. The Jordan's network shows relatively higher recognition rate than Elman's. Although, Recurrent Neural Predictive HMMs have the structure of hybrid network, the results are worse than HMM's.

      • KCI등재SCOPUS

        dPCA-HMM을 이용한 전투기 조종사 모델링 연구

        최예림(Yerim Choi),전승욱(Sungwook Jeon),박종헌(Jonghun Park),신동민(Dongmin Shin) 한국항공우주학회 2015 한국항공우주학회지 Vol.43 No.1

        전투기 조종사 모델링은 국방 M&S(Modeling & Simulation)를 활용한 전쟁 모의 및 전투 실험의 기초 기술로 국방 M&S의 중요성이 대두됨에 따라 연구의 필요성이 높아지고 있다. 특히, 최근 전투 로그의 축적으로 통계적 학습 기법을 활용한 모델링의 적용이 가능해졌으며 전투 로그의 시계열적 특성을 반영할 수 있는 HMM(Hidden Markov Model)이 적합하다. 하지만 HMM은 이산형 혹은 연속형 중 한 형태의 변수만을 통해 학습되므로 이형 변수로 구성된 전투 로그에 적용을 위해서는 형변환 과정이 필요하다. 따라서 본 논문에서는 형변환을 위한 dPCA(Discrete Principal Component Analysis)와 HMM을 접목한 dPCA-HMM 기반 조종사 모델링 방법을 제안한다. 국방과학연구소 관급 시뮬레이터로부터 생성된 전투 로그를 이용한 비교 실험을 통해 제안하는 방법론의 성능을 평가하였으며, 만족스러운 성능을 나타내었다. Modeling of fighter pilots, which is a fundamental technology for war games using defense M&S (Modeling & Simulation) becomes one of the prominent research issues as the importance of defense M&S increases. Especially, the recent accumulation of combat logs makes it possible to adopt statistical learning methods to pilot modeling, and an HMM (Hidden Markov Model) which is able to utilize the sequential characteristic of combat logs is suitable for the modeling. However, since an HMM works only by using one type of features, discrete or continuous, to apply an HMM to heterogeneous features, type integration is required. Therefore, we propose a dPCA-HMM method, where dPCA (Discrete Principal Component Analysis) is combined with an HMM for the type integration. From experiments conducted on combat logs acquired from a simulator furnished by agency for defense development, the performance of the proposed model is evaluated and was satisfactory.

      • KCI등재SCOPUS

        회귀신경망 예측 HMM을 이용한 숫자음 인식에 관한 연구

        김수훈,고시영,허강인 한국음향학회 2001 韓國音響學會誌 Vol.20 No.8

        In this paper, we propose the Recurrent Neural Predictive HMM (RNPHMM). The RNPHMM is the hybrid network of the recurrent neural network and HMM. The predictive recurrent neural network trained to predict the future vector based on several last feature vectors, and defined every state of HMM. This method uses the prediction value from the predictive recurrent neural network, which is dynamically changing due to the effects of the previous feature vectors instead of the stable average vectors. The models of the RNPHMM are Elman network prediction HMM and Jordan network prediction HMM. In the experiment, we compared the recognition abilities of the RNPHMM as we increased the state number, prediction order, and number of hidden nodes for the isolated digits. As a result of the experiments, Elman network prediction HMM and Jordan network prediction HMM have good recognition ability as 98.5% for test data, respectively.

      • KCI등재

        Bi-Level HMM을 이용한 효율적인 음성구간 검출 방법

        장광우(Guang-Woo Jang),정문호(Mun-Ho Jeong) 한국전자통신학회 2015 한국전자통신학회 논문지 Vol.10 No.8

        본 논문에서는 Bi-Level HMM을 이용한 음성구간 검출 방법을 제안하였다. 기존의 음성 구간 검출법은 짧은 상태변화 오류(Burst Clipping)를 제거하기 위하여 별도의 후처리 과정을 거치든가, 규칙 기반 지연 프레임을 설정해야만 한다. 이러한 문제에 대처하기 위하여 기존의 HMM 모델에 상태 계층을 추가한 Bi-Level HMM을 이용하여 음성구간 판정을 위해 음성상태의 사후 확률비를 이용하였다. 사람의 청각특성을 고려한 MFCC를 특징치로 하여, 다양한 SNR의 음성 데이터에 대한 평가지표를 활용한 실험을 수행하여 기존의 음성상태 분류법보다 우수한 결과를 얻을 수 있었다. We presented a method for Vad(Voice Activity Detection) using Bi-level HMM. Conventional methods need to do an additional post processing or set rule-based delayed frames. To cope with the problem, we applied to VAD a Bi-level HMM that has an inserted state layer into a typical HMM. And we used posterior ratio of voice states to detect voice period. Considering MFCCs(:Mel-Frequency Cepstral Coefficients) as observation vectors, we performed some experiments with voice data of different SNRs and achieved satisfactory results compared with well-known methods.

      • KCI등재

        다층회귀신경예측 모델 및 HMM 를 이용한 임베디드 음성인식 시스템 개발에 관한 연구

        김정훈(Jung hoon Kim),장원일(Won il Jang),김영탁(Young tak Kim),이상배(Sang bae Lee) 한국지능시스템학회 2004 한국지능시스템학회논문지 Vol.14 No.3

        본 논문은 주인식기로 흔히 사용되는 HMM 인식 알고리즘을 보완하기 위한 방법으로 회귀신경회로망(Recurrent neural networks : RNN)을 적용하였다. 이 회귀신경회로망 중에서 실 시간적으로 동작이 가능하게 한 방법인 다층회귀신경예측 모델(Multi-layer Recurrent Neural Prediction Model : MRNPM)을 사용하여 학습 및 인식기로 구현하였으며, HMM과 MRNPM 을 이용하여 Hybrid형태의 주 인식기로 설계하였다. 설계된 음성 인식 알고리즘을 잘 구별되지 않는 한국어 숫자음(13개 단어)에 대해 화자 독립형으로 인식률 테스트 한 결과 기존의 HMM인식기 보다 5%정도의 인식률 향상이 나타났다. 이 결과를 이용하여 실제 DSP(TMS320C6711) 환경 내에서 최적(인식) 코드만을 추출하여 임베디드 음성 인식 시스템을 구현하였다. 마찬가지로 임베디드 시스템의 구현 결과도 기존 단독 HMM 인식시스템보다 향상된 인식시스템을 구현할 수 있게 되었다. In this paper, the recurrent neural networks (RNN) is applied to compensate for HMM recognition algorithm, which is commonly used as main recognizer. Among these recurrent neural networks, the multi-layer recurrent neural prediction model (MRNPM), which allows operating in real-time, is used to implement learning and recognition, and HMM and MRNPM are used to design a hybrid-type main recognizer. After testing the designed speech recognition algorithm with Korean number pronunciations (13 words), which are hardly distinct, for its speech-independent recognition ratio, about 5% improvement was obtained comparing with existing HMM recognizers. Based on this result, only optimal (recognition) codes were extracted in the actual DSP (TMS320C6711) environment, and the embedded speech recognition system was implemented. Similarly, the implementation result of the embedded system showed more improved recognition system implementation than existing solid HMM recognition systems.

      • KCI등재

        우리나라 조선소와 해운선사에서 경영권 확보 사례연구 —한화의 대우조선해양인수와 HMM의 민영화를 중심으로—

        김인현 한국경영법률학회 2024 경영법률 Vol.34 No.4

        대우조선해양은 재무상태가 나빠서 선박건조에 어려움을 겪고 있었다. 최대주주였던 산업은행은 2조원을 지급하고 대우조선해양을 인수할 자를 찾았다. 한화그룹이 대상자로 나타났다. 신주를 제3자 배정방식으로 하여 한화그룹이 2조원으로 신주를 인수하여 최대주주가 되었다. 이사회와 주주총회를 거쳤다. 이에 반하여 HMM의 경우 같은 산업은행이 최대주주이지만, 재무상태가 좋았다. 그러나, 민영화를 위해서는 주식의 지분의 51%를 취득해야한다. 기존의 주식을 취득하는 방식으로 민영화가 이루어 지도록 했다. 정부가 소유하고있는 주식(지분의 58%) 약 6조원으로 HMM을 사가는 작업이 이루어졌다. 하림이 최종협상대상자로 선정되었지만 영구채등의 처리문제로 인수는 실패했다. 이 두사건은 경영진이 변경된다는 점에서 공통이지만, 대우조선해양은 신주발행후 제3자가 인수하는 방식으로, HMM은 기존 발행된 신주를 인수하는 형식으로 차이가 있다. Daewoo Shipbuilding & Marine Engineering (DSME) was struggling with shipbuilding due to its poor financial structure. The largest shareholder, the Industrial Bank of Korea, provided 2 trillion won and sought a buyer for DSME. Hanwha Group emerged as the candidate. The company issued new shares through a third-party allocation method, allowing Hanwha Group to become the largest shareholder by investing 2 trillion won. This process involved the board of directors and a shareholders' meeting. In contrast, HMM, where the Industrial Bank of Korea is also the largest shareholder, had a good financial condition. However, to privatize the company, it was necessary to acquire 51% of the shares. The privatization was carried out by acquiring existing shares. The government, which owned about 58% of the shares, sold HMM for approximately 6 billion won. Harim was selected as the final negotiation partner, but the acquisition failed due to issues with handling perpetual bonds. The common factor in these two cases is the change in management, but the methods differed: DSME used a new share issuance followed by acquisition by a third party, while HMM used the acquisition of existing shares.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼