RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 고온 수열 콘크리트의 압축강도와 이축휨강도의 상관성 검토

        이건철 ( Lee Gun-cheol ),권현우 ( Kwon Hyun-woo ),김영민 ( Kim Young-min ),허영선 ( Heo Young-sun ) 한국건축시공학회 2021 한국건축시공학회 학술발표대회 논문집 Vol.21 No.1

        In this study, we conducted a study to evaluate the more accurate mechanical properties of concrete damaged by fire. In relation to this, in this study, the results of compressive strength and biaxial flexural strength were compared for concrete that received high temperature heat. As a result, both the compressive strength and the biaxial bending strength decreased as the heating temperature increased. As a result of examining the correlation between the compressive strength and the biaxial flexural strength, the biaxial flexural strength was smaller than the compressive strength.

      • SCIESCOPUSKCI등재

        The effects of surface grinding and polishing on the phase transformation and flexural strength of zirconia

        Ji-Young Lee,Geun-Won Jang,In-Im Park,Yu-Ri Heo,Mee-Kyoung Son 대한치과보철학회 2019 The Journal of Advanced Prosthodontics Vol.11 No.1

        PURPOSE. The purpose of this in vitro study was to evaluate the effect of surface grinding and polishing procedures using high speed zirconia diamond burs with different grit sizes on the phase transformation and flexural strength of zirconia. MATERIALS AND METHODS. Forty disc shape specimens (15 × 1.25 mm) with a cylindrical projection in the center of each disc (1 × 3 mm) were fabricated with 3Y-TZP (Prettau, Zirkonzahn, Italy). The specimens were divided into 4 groups (n=10) according to the grinding and polishing procedures: Control group - grinding (coarse-grit diamond bur), Group 1 - grinding (coarse-grit diamond bur) + polishing, Group 2 - grinding (fine-grit diamond bur) + polishing, and Group 3 - grinding (fine grit diamond bur). Each specimen was analyzed by 3D-OM, XRD analysis, and biaxial flexural strength test. RESULTS. Based on the surface morphology by 3D-OM images, polished specimens showed smoother surface and lower roughness value (Ra). In the result of XRD analysis, partial phase transformation from tetragonal to monoclinic zirconia occurred in all groups. Control group, ground with a coarse grit diamond bur, showed more t→m phase transformation and lower flexural strength than Groups 1 and 2 significantly. CONCLUSION. The flexural strength in all specimens after grinding and polishing showed over 500 MPa, and those were clinically acceptable. However, grinding with a coarse grit diamond bur without polishing induced the phase transformation and low strength. Therefore, surface polishing is required for the occlusal adjustment using a high speed zirconia diamond bur to reduce the phase transformation and to prevent the decrease of flexural strength of zirconia. [ J Adv Prosthodont 2019;11:1-6] PURPOSE. The purpose of this in vitro study was to evaluate the effect of surface grinding and polishing procedures using high speed zirconia diamond burs with different grit sizes on the phase transformation and flexural strength of zirconia. MATERIALS AND METHODS. Forty disc shape specimens (15 × 1.25 mm) with a cylindrical projection in the center of each disc (1 × 3 mm) were fabricated with 3Y-TZP (Prettau, Zirkonzahn, Italy). The specimens were divided into 4 groups (n=10) according to the grinding and polishing procedures: Control group - grinding (coarse-grit diamond bur), Group 1 - grinding (coarse-grit diamond bur) + polishing, Group 2 - grinding (fine-grit diamond bur) + polishing, and Group 3 - grinding (fine grit diamond bur). Each specimen was analyzed by 3D-OM, XRD analysis, and biaxial flexural strength test. RESULTS. Based on the surface morphology by 3D-OM images, polished specimens showed smoother surface and lower roughness value (Ra). In the result of XRD analysis, partial phase transformation from tetragonal to monoclinic zirconia occurred in all groups. Control group, ground with a coarse grit diamond bur, showed more t→m phase transformation and lower flexural strength than Groups 1 and 2 significantly. CONCLUSION. The flexural strength in all specimens after grinding and polishing showed over 500 MPa, and those were clinically acceptable. However, grinding with a coarse grit diamond bur without polishing induced the phase transformation and low strength. Therefore, surface polishing is required for the occlusal adjustment using a high speed zirconia diamond bur to reduce the phase transformation and to prevent the decrease of flexural strength of zirconia. [ J Adv Prosthodont 2019;11:1-6]

      • KCI등재

        최적실험체 제원에 의한 콘크리트의 일축 및 이축 휨인장강도

        오홍섭(Oh Hongseob),지광습(Zi Goangseup) 대한토목학회 2010 대한토목학회논문집 A Vol.30 No.2A

        콘크리트 구조물의 사용성과 내구성 저하의 원인이 되는 균열은 응력의 크기, 응력구배 및 기타 구조적 재료적 원인 등에 의하여 발생하기 때문에 콘크리트의 균열강도를 정확히 예측하기는 매우 어렵다. 특히 판구조의 경우 기존의 일축휨강도에 의한 균열평가가 실제 구조물의 균열강도와 상이할 수 있다 본 연구에서는 이축휨인장강도 평가에 적합한 시험체 제원을 적용하여 일축과 이축휨강도 특성을 비교, 평가하였다. 실험결과 골재의 크기 및 실험체 크기의 증가에 따라 일축 및 이축 휨강도 모두 강도가 저하되는 것으로 나타났다. 일축휨강도에 비하여 이축휨강도가 일축휨강도의 39.5~99.2%로서 전반적으로 낮은 강도를 갖는 것으로 평가되었으며, 특히 20 ㎜ 골재를 사용한 경우에는 76%정도로 고찰되었다. Because the concrete crack that is the reason of the serviceability and durability degradation of concrete structure can be arisen from either the stress magnitude and gradient or other structural and material defects, the crack strength of concrete is hard to accurately evaluate. Especially, stress-state in concrete plate components such as rigid pavement and long span slab is biaxial flexure stress, and the flexural strength of those component may be different than the traditional rupture modulus of concrete subjected to uniaxial stress. In this study, an experimental investigation to assess of mechanical behavior under uniaxial and biaxial flexure stress is conducted and the proposed optimum specimen configuration is adopted. From the test, the modulus of rupture under uniaxial and biaxial stress are decreased as the size of aggregate or specimen is larger. And biaxial flexure strength of concrete specimens is varied from 39.5 to 99.2% as compared with that of uniaxial strength, and the biaxial strength of specimen with 20㎜ aggregate size is only 76% of uniaxial strength.

      • KCI등재

        Empress 2 도재의 두께에 따른 파절강도에 관한 연구

        고정우,양재호,이선형,Koh, Jung-Woo,Yang, Jae-Ho,Lee, Sun-Hyung 대한치과보철학회 2000 대한치과보철학회지 Vol.38 No.4

        All-ceramic restorations have had a more limited life expectancy than metal ceramic crowns be-cause of their lower strength. The relatively lower strength has limited the use of all-ceramic crowns to the areas where occlusal loads are lower Therefore many researches have been done to increase the strength of all-ceramic crowns. IPS Empress 2 is a new type of lithium disilicate glass-ceramic with enhanced physical characteristics which has been in use clinically since 1998. Previous researches reported that the flexural strength of all-ceramic material was greater than 300 MPa, and all-ceramic crowns can be used in staining or layering technique. The objective of this study was to investigate the influence of the thickness of IPS Empress 2 ceramic on fracture strength. Both staining technique and layering technique was investigated. Vita VMK was used as control. For all three groups, five specimens each of 0.8mm, 1.0mm, 1.4mm, 1.8mm, and 2.2mm thick-ness (a total of 75 specimens) were prepared. Control group : Vita VMK Porcelain specimens were prepared with dentine ceramic and liquid glazing was done. Group I : IPS Empress 2 were prepared with staining technique and stained twice and glazed once. Group II : IPS Empress 2 were prepared with layering technique and glazed after wash firing. The thickness and diameter of the specimen were measured and controlled after specimen preparation. Biaxial Flexure Test (ASTM Standard F394-78) was adopted as this test method produces results least affected by the edge condition of the specimens. Fracture strength was measured with Instron Universal Testing Machine. Conclusions are as follow : 1. The fracture strength was increase in order of control group, test group I, test group II. 2. Fracture strength of the group I (Empress 2 Staining) was 65.54 N in 0.8mm, 155.2 N in 1.0mm, 233.5 N in 1.4mm, 434.5 N in 1.8mm, and 600.1 N in 2.2mm. 3. Fracture strength of the group II (Empress 2 Layering) was 190.0 N in 0.8mm, 283.5 N in 1.0mm. 437.2 N in 1.4mm, 732.0 N in 1.8mm, and 1115.0 N in 2.2mm. 4. No statistical difference was found in flexural strengths according to thickness in a specified group(p>0.05).

      • KCI등재

        Evaluation of Biaxial Strength Deterioration for Coastal Bridge Piers under Non-uniform Corrosion

        Wenting Yuan,Qinghe Fang,Zhaoxing Dong 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.3

        Coastal bridge piers in the corrosive marine environment inevitably deteriorate over time, leading to a reduction in their strength. In the present study, a biaxial strength prediction method for non-uniform corroded bridge piers under axial force and biaxial bending moments is proposed by extending the applicable range of the load contour method. First, a method to establish the three-dimensional interaction surface is developed on the basis of the fiber-section model, which considers the two-dimensional chloride diffusion, the degradation of reinforcement and concrete. The proposed methodology is verified by a biaxial quasi-static test of the locally corroded bridge column specimens. Then, through further case study, the time-dependent characteristics of the interaction surface for bridge piers in the splash and tidal region and the atmospheric region are investigated. Finally, the expression of surface exponent is obtained from the interaction surface, which can be used in Bresler’s load contour method to evaluate the deterioration in the biaxial strength of coastal bridge piers. The analytical results conclude that the expression of surface exponent can be divided into three stages including the constant stage, decrease stage and increase stage during the pier’s service life. Axial compression ratio and corrosion degree are two important factors which influence the biaxial strength deterioration for different corrosion regions of the coastal bridge pier.

      • KCI등재

        Cao-MgO-SiO₂-P₂O -CaF₂계 생체활성 결정화 유리의 기계적 성질에 미치는 ZrO₂및 Al₂O₃의 분산 강화 효과

        박찬운,강건구,원대희,이민호,배태성 대한치과기재학회 1998 대한치과재료학회지 Vol.25 No.2

        Bioactive glass-ceramics can form tight chemical bonds with bone, however, their poor mechanical properties may limit their clinical applications. Alumina ceramics show good biocompatibility and high strength but can't form chemical bonds with bone. Hydroxyapatite ceramics and bioglass form chemical bonds with bone but their strength and fracture are relatively low. Glass ceramics containing apatite and wollastonite crystals can form tight chemical bonds with bone and show relatively high strength and fracture toughness. Bioactive glass-ceramics toughened by alumina and tetragonal zirconia polycrystals show relatively high mechanical strength. Both bioactive and high strength ceramics will be widely applicable to many clinical applications. In this study, bioactive glass-ceramics toughened by alumina and zirconia polycrystals were fabricated, and crystallization behavior, biaxial flexure strength, fracture toughness, and bioactivity were measured. The results obtained were summarized as follows; 1. The major crystaline phase in the matrix glass were observed to be apatite, wollastonite, and β-TCP. 2. Biaxial flexure strength and fracture toughness values were more improved by the dispersion toughening of alumina and zirconia, and the improvement of mechanical strength was more higher in the dispersion toughening of zirconia than that of alumina. 3. The bioactivity, which was evaluted from apatite formation in the simulated body fluid, was higher in the dispersion toughening of Zr-O₂than that of Al₂O₃.

      • KCI등재

        Flexural strength and microstructure of two lithium disilicate glass ceramics for CAD/CAM restoration in the dental clinic

        Kang, Suk-Ho,Chang, Juhea,Son, Ho-Hyun The Korean Academy of Conservative Dentistry 2013 Restorative Dentistry & Endodontics Vol.38 No.3

        Objectives: There has been a growing interest in glass ceramic systems with good esthetics, high fracture resistance and bonding durability, and simplified fabrication techniques using CAD/CAM. The aim of this study is to compare flexural strength before and after heat treatment of two lithium disilicate CAD/CAM blocks, IPS e.max CAD (Ivoclar Vivadent) and Rosetta SM (Hass), and to observe their crystalline structures. Materials and Methods: Biaxial flexural strength was tested according to ISO 6872 with 20 disc form specimens sliced from each block before and after heat treatment. Also, the crystalline structures were observed using field-emission scanning microscopy (FE-SEM, Hitachi) and x-ray diffraction (XRD, Rigaku) analysis. The mean values of the biaxial flexural strength were analyzed by the Mann-Whitney U test at a significance level of p = 0.05. Results: There were no statistically significant differences in flexural strength between IPS e.max CAD and Rosetta SM either before heat treatment or after heat treatment. For both ceramics, the initial flexural strength greatly increased after heat treatment, with significant differences (p < 0.05). The FE-SEM images presented similar patterns of crystalline structure in the two ceramics. In the XRD analysis, they also had similar patterns, presenting high peak positions corresponding to the standard lithium metasilicate and lithium disilicate at each stage of heat treatment. Conclusions: IPS e.max CAD and Rosetta SM showed no significant differences in flexural strength. They had a similar crystalline pattern and molecular composition.

      • KCI등재

        Flexural strength and microstructure of two lithium disilicate glass ceramics for CAD/CAM restoration in the dental clinic

        강석호,장주혜,손호현 대한치과보존학회 2013 Restorative Dentistry & Endodontics Vol.38 No.3

        Objectives: There has been a growing interest in glass ceramic systems with good esthetics, high fracture resistance and bonding durability, and simplified fabrication techniques using CAD/CAM. The aim of this study is to compare flexural strength before and after heat treatment of two lithium disilicate CAD/CAM blocks, IPS e.max CAD (Ivoclar Vivadent) and Rosetta SM (Hass), and to observe their crystalline structures. Materials and Methods: Biaxial flexural strength was tested according to ISO 6872with 20 disc form specimens sliced from each block before and after heat treatment. Also, the crystalline structures were observed using field-emission scanning microscopy (FE-SEM, Hitachi) and x-ray diffraction (XRD, Rigaku) analysis. The mean values of the biaxial flexural strength were analyzed by the Mann-Whitney U test at a significance level of p = 0.05. Results: There were no statistically significant differences in flexural strength between IPS e.max CAD and Rosetta SM either before heat treatment or after heat treatment. For both ceramics, the initial flexural strength greatly increased after heat treatment, with significant differences (p < 0.05). The FE-SEM images presented similar patterns of crystalline structure in the two ceramics. In the XRD analysis,they also had similar patterns, presenting high peak positions corresponding to the standard lithium metasilicate and lithium disilicate at each stage of heat treatment. Conclusions: IPS e.max CAD and Rosetta SM showed no significant differences in flexural strength. They had a similar crystalline pattern and molecular composition. (Restor Dent Endod 2013;38(3):134-140)

      • KCI등재

        Flexural strength and microstructure of two lithium disilicate glass ceramics for CAD/CAM restoration in the dental clinic

        Suk-Ho Kang,Juhea Chang,Ho-Hyun Son 大韓齒科保存學會 2013 Restorative Dentistry & Endodontics Vol.38 No.3

        Objectives: There has been a growing interest in glass ceramic systems with good esthetics, high fracture resistance and bonding durability, and simplified fabrication techniques using CAD/CAM. The aim of this study is to compare flexural strength before and after heat treatment of two lithium disilicate CAD/CAM blocks, IPS e.max CAD (Ivoclar Vivadent) and Rosetta SM (Hass), and to observe their crystalline structures. Materials and Methods: Biaxial flexural strength was tested according to ISO 6872with 20 disc form specimens sliced from each block before and after heat treatment. Also, the crystalline structures were observed using field-emission scanning microscopy (FE-SEM, Hitachi) and x-ray diffraction (XRD, Rigaku) analysis. The mean values of the biaxial flexural strength were analyzed by the Mann-Whitney U test at a significance level of p = 0.05. Results: There were no statistically significant differences in flexural strength between IPS e.max CAD and Rosetta SM either before heat treatment or after heat treatment. For both ceramics, the initial flexural strength greatly increased after heat treatment, with significant differences (p < 0.05). The FE-SEM images presented similar patterns of crystalline structure in the two ceramics. In the XRD analysis,they also had similar patterns, presenting high peak positions corresponding to the standard lithium metasilicate and lithium disilicate at each stage of heat treatment. Conclusions: IPS e.max CAD and Rosetta SM showed no significant differences in flexural strength. They had a similar crystalline pattern and molecular composition.

      • KCI등재

        Mechanical Properties and Microstructure of the Leucite-Reinforced Glass-Ceramics for Dental CAD/CAM

        변선미,송재주 한국치위생과학회 2018 치위생과학회지 Vol.18 No.1

        The computer-aided design/computer-aided manufacturing (CAD/CAM) system was introduced to shorten the production time of all-ceramic restorations and the number of patient visits. Among these types of ceramic for dental CAD/CAM, they have been processed into inlay, onlay, and crown shapes using leucite-reinforced glass-ceramics to improve strength. The purpose of this study was to observe the mechanical properties and microstructure of leucite-reinforced glass-ceramics for dental CAD/CAM. Two types of leucite-reinforced glass-ceramic blocks (IPS Empress CAD, Rosetta BM) were prepared with diameter of 13 mm and thickness of 1 mm. Biaxial flexural testing was conducted using a piston-on-three-ball method at a crosshead speed of 0.5 mm/min. Weibull statistics were used for the analysis of biaxial flexural strength. Fracture toughness was obtained using an indentation fracture method. Specimens were observed by field emission scanning electron microscopy to examine the microstructure of the leucite crystalline phase after acid etching with 0.5% hydrofluoric acid aqueous solution for 1 minute. The results of strength testing showed that IPS Empress CAD had a mean value of 158.1±8.6 MPa and Rosetta BM of 172.3±8.3 MPa. The fracture toughness results showed that IPS Empress CAD had a mean value of 1.28±0.19 MPa·m1/2 and Rosetta BM of 1.38±0.12 MPa·m1/2. The Rosetta BM sample exhibited higher strength and fracture toughness. Moreover, the crystalline phase size and ratio were increased in the Rosetta BM sample. The above results are expected to elucidate the basic mechanical properties and crystal structure characteristics of IPS Empress CAD and Rosetta BM. Additionally, they will help develop leucite-reinforced glass-ceramic materials for CAD/CAM.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼