RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 음식물 탈리액 및 매립지 침출수 병합처리에 대한 미생물 연료전지(MFC)의 적용성 평가

        엄한기 ( Hanki Eom ),최유현 ( Yoohyun Choi ) 한국폐기물자원순환학회(구 한국폐기물학회) 2016 한국폐기물자원순환학회 심포지움 Vol.2016 No.2

        미생물 연료전지는 축산폐수, 음식물류폐기물 침출폐수, 하수슬러지, 식품가공 공정 폐수 등 유기물 함량이 높은 유기성 폐수를 기질로 사용할 수 있으며, 기질의 종류에 따라 전기발생량 및 산화전극부의 미생물 군집에 영향을 미치는 것으로 알려져 있다. 미생물 연료전지는 산화전극부, 이온교환막, 환원전극부, 물질전달매개체 등으로 이루어져 있으며, 산화전극부에서는 미생물에 의해 유기물이 분해되면서 전자와 수소이온이 발생하고 이때 생성된 수소이온은 이온교환막을 통해 환원전극으로 이동한다. 또한 이때 발생한 전자는 물질전달 매개체를 통해 환원전극부로 이동하게 되고 환원전극부로 이동한 수소 및 전자는 전자수용체인 산소와 반응하여 물을 생성하는 메커니즘으로 전기를 생산한다. 따라서 미생물 연료전지의 전기생산효율을 높이기 위해서는 산화·환원전극의 소재 및 물질전달매개체의 전자전달 효율 개선이 필요하다. 따라서 본 연구에서는 미생물연료전지의 전기생산 효율을 증대시키기 위한 전극소재개발 및 폐수처리공정과의 결합을 도모함으로써 폐수처리공정 내 유기물 및 영양염류 제거효율 검토를 통해 미생물 연료전지와 폐수처리공정의 적용가능성을 평가하였다. Standard Type의 미생물 연료전지와 Granule graphite 및 Carbon 계열 Nanofiberl을 전극으로 하는 연료전지 반응조 내에서 유기물 및 영양염류가 약 90%이상 제거됨을 알 수 있었으며, 미생물 연료전지와 유기성폐수처리를 위한 고도처리공정과의 연계처리가 가능할 것으로 판단된다. Sol-gel 법 및 Electro-Spining을 이용한 전극코팅 및 섬유제작이 가능한 것으로 나타났으며, Nozzle, Collector간 거리에 따른 탄소조합 소재 및 탄소코팅 소재 개발과 백금촉매 코팅 비율에 따른 전극 개발을 통해 미생물 연료전지 내 전류생산 효율을 증대할 수 있을 것으로 판단된다. 유기물 및 영양염류제거에 따른 전기방출 미생물이 증식함에 따라 전류생산량이 증가하는 것을 알 수 있었으며, 약 4일 이후 평형상태에 도달하는 것으로 나타났다. 따라서 향후 운전조건 변화에 따른 전류생산 및 전압변화평가를 통해 미생물 연료전지 전류생산효율 증대 방안 수립이 필요할 것으로 판단된다.

      • 유기성 폐수처리에 대한 미생물 연료전지(MFC)의 적용성 평가

        최유현,엄한기,주현종 한국폐기물자원순환학회(구 한국폐기물학회) 2016 한국폐기물자원순환학회 춘계학술발표논문집 Vol.2016 No.-

        최근 에너지 비용 증가로 인해 대체에너지와 에너지 효율이 높은 공정 개발에 관한 연구들이 활발히 진행되고 있으며 특히 유기성 폐자원을 이용하여 에너지생산이 가능한 미생물 연료전지(Microbial Fuel Cell, MFC)에 대한 연구가 진행되어지고 있다. 미생물연료전지는 전기화학적으로 활성이 있는 미생물을 이용, 유기물을 분해하여 전기에너지를 생산하는 장치이며 미생물 연료전지를 이용하여 하·폐수 내 존재하는 유기오염물을 처리함과 동시에 에너지를 생산할 수 있다. 미생물 연료전지는 축산폐수, 음식물류폐기물 침출폐수, 하수슬러지, 식품가공 공정 폐수 등 유기물 함량이 높은 유기성 폐수를 기질로 사용할 수 있으며, 기질의 종류에 따라 전기발생량 및 산화전극부의 미생물 군집에 영향을 미치는 것으로 알려져 있다. 미생물 연료전지는 산화전극부, 이온교환막, 환원전극부, 물질전달매개체 등으로 이루어져 있으며, 산화전극부에서는 미생물에 의해 유기물이 분해되면서 전자와 수소이온이 발생하고 이때 생성된 수소이온은 이온교환막을 통해 환원전극으로 이동한다. 또한 이때 발생한 전자는 물질전달 매개체를 통해 환원전극부로 이동하게 되고 환원전극부로 이동한 수소 및 전자는 전자수용체인 산소와 반응하여 물을 생성하는 메커니즘으로 전기를 생산한다. 따라서 미생물 연료전지의 전기생산효율을 높이기 위해서는 산화·환원전극의 소재 및 물질전달매개체의 전자전달 효율 개선이 필요하다. 따라서 본 연구에서는 미생물연료전지의 전기생산효율을 증대시키기 위한 전극소재개발 및 폐수처리공정과의 결합을 도모함으로써 폐수처리공정 내 유기물 및 영양염류 제거효율 검토를 통해 미생물 연료전지와 폐수처리공정의 적용가능성을 평가하였다. 연구 방법으로써 실험실규모(Lab. scale)의 미생물연료전지 장치를 설치하였으며, 미생물 연료전지 내 전극 소재 개발을 위해 전기방사장치(Electro spining)를 이용하였다. 그 결과 전기방사장치에 의해 Nano fiber가 교차되어 섬유상을 이루는 것을 확인하였으며, 또한 전기전달력이 우수한 Carbon 소재를 혼합하여 미생물 연료전지 내 적용가능한 전극소재를 제조하였다. 개발된 전극소재를 이용 미생물연료전지에 적용할 경우 4일(96hr) 이후 최대 7.6mA까지 전류가 생성되는 것을 알 수 있었으며 이는 24시간 이후 전기방출 미생물이 증식하기 시작하면서 전류가 생성되는 것으로 판단된다. 또한 실험실규모 미생물 연료전지 내 유기물 및 영양염류제거효율을 평가하기 위하여 합성폐수를 제조하여 주입하였으며, 약 10일간 미생물 연료전지를 운전한 결과 유기물의 경우 총 58.6% 제거되었으며, NH<sub>3</sub>-N, NO<sub>3</sub> <sup>-</sup>-N 및 PO<sub>4</sub> <sup>3-</sup>-P의 경우 각각 73.5, 80.4 및 83.2%의 제거효율을 나타내고 있으며 이는 회분식 실험에 따른 높은 체류시간 및 미생물 세포합성에 의한 영양염류제거로 판단된다. 따라서 향후 연속식 운전조건을 통한 유기물 및 영양염류제거효율 평가를 통해 생물학적 폐수처리와의 연계처리 가능성 평가가 필요할 것으로 사료된다.

      • 미생물연료전지 스택에 따른 가축분뇨 내 유기물의 에너지 전환 효율 연구

        김태영,장재경,강석원,장인섭,김현우,백이,성제훈,김영화 한국폐기물자원순환학회(구 한국폐기물학회) 2017 한국폐기물자원순환학회 춘계학술발표논문집 Vol.2017 No.-

        미생물연료전지(MFC)는 폐기물 속에 포함된 유기물을 전기로 전환하는 시스템으로 스케일업(scale-up)과 전압 및 전류 향상을 위해서는 미생물연료전지의 스택(stack)이 필요하다. 미생물연료전지의 전압을 향상시키기 위해서는 직렬연결, 전류를 증가시키기 위해서는 병렬연결이 필요하며 각 연결방법에 따른 유기물 제거와 전력생산의 관계는 폐기물 처리와 에너지 전환 효율적인 측면에서 중요한 인자이며 이에 대한 연구는 미비한 실정이다. 본 연구는 2개의 미생물연료전지(MFC 1, 2) 셀을 미연결, 직렬 연결, 병렬 연결하였을 때 유기물 변화와 전류 발생량을 모니터링한 후 이에 따른 쿨롱효율을 분석하여 각 연결에 따른 유기물 변화와 에너지 전환 효율에 따른 효과적인 스택 방법을 제시하고자 한다. 미연결된 미생물연료전지(MFC unit 1, 2), 직렬 연결된 미생물연료전지(MFC 1-2), 병렬연결된 미생물연료전지(MFC 1//2)의 하루 동안 변화된 화학적 산소 요구량(COD)는 각각 163mg, 213mg, 194mg으로 직렬 연결된 미생물연료전지에서 가장 높은 유기물 제거율을 보였다. 이때 발생된 평균 전류는 각각 2.13mA, 2.83mA, 4.14mA로 병렬 연결된 미생물연료전지에서 가장 높은 전류 값을 보였으나 유기물 제거량과 전류 발생량으로부터 계산된 쿨롱효율은 각각 19.8%, 10.5%, 15.2%로 미연결된 미생물연료전지에서 가장 높은 쿨롱효율 값을 나타났다. 비록 각기 다른 유기물 변화, 전류 생산, 쿨롱효율 값을 보였지만 각 연결에 따른 미생물연료전지의 성능을 측정하였을 때 비슷한 전력 값이 생산된 것을 확인할 수 있었으며 이는 각 연결 방법에 따른 에너지 손실이 다르다는 것으로 추측할 수 있다. 이러한 결과를 바탕으로 미생물연료전지 스택시 병렬연결 방법이 폐기물 내에 유기물 처리와 에너지 전환 효율 적인 측면에서는 가장 효과적인 방법이라고 판단된다.

      • 니켈 함유 콜타르 피치와 팽창흑연, 탄소나노튜브를 이용하여 제작한 미생물연료전지 산화전극의 성능평가

        윤형선,송영채,최태선 한국폐기물자원순환학회 2015 한국폐기물자원순환학회 학술대회 Vol.2015 No.11

        미생물연료전지(Microbial fuel cells, MFCs)의 성능은 미생물이 부착 성장하는 산화전극의 활성에 의해 크게 영향을 받는다. 미생물연료전지의 산화전극 활성은 전극표면의 높은 생물친화도, 미생물이 부착성장 할 수 있는 넓은 표면적, 전기전도도 등에 의해서 결정된다. 지금까지 연구되어 온 미생물연료전지의 산화전극 재료들은 주로 다공성유리탄소, 탄소천, 탄소섬유 브러쉬, 흑연펠트, 흑연섬유 등의 탄소계열의 전도성 물질들이었다. 그러나, 이러한 탄소계열 물질들은 그 종류에 따라 비표면적이 작거나, 표면이 소수성이며, 금속과 비교할 때 전도성이 좋지 않은 특성을 가진 것들이 많다. 그러나, 서로 다른 특성을 가지는 탄소계열 물질들을 동시에 사용함으로서 각각의 재료들이 가지는 단점들을 보완함으로서 높은 활성을 가지는 미생물연료전지 산화전극을 제작하고자 하는 시도들이 이루어지고 있다. 그러나, 탄소계열 물질들을 동시에 사용하기 위해서는 이러한 재료들을 서로 혼합하고 내부적으로 결합시키기 위한 결합제가 반드시 필요한데 완성된 산화전극의 활성은 결합제의 종류에 의해서 크게 영향을 받는다. 지금까지는 주로 Nafion 용액, 에폭시 등의 고분자 물질들을 결합제로 사용하여 왔는데, Nafion 용액은 전도성 높고 친수성 물질이라는 장점이 있지만 부착력이 낮고 가격이 비싼 고가의 물질이라는 한계점을 가지고 있다. 또한, Epoxy는 부착력이 강한 반면 전도성이 없는 소수성 물질이라는 단점이 있다. 본 연구에서는 콜타르 피치(Coal tar pitch, CTP)에 니켈(Nickel, Ni)을 다양한 비율로 혼합하여 결합제를 제조하고, 이를 이용하여 제작한 팽창흑연과 탄소나노튜브 산화전극의 성능을 회분식 미생물연료 전지를 이용하여 평가하였다. 산화전극 제작에 사용된 결합제의 CTP 양이 적을수록, 전기적 활성은 증가하였으나 부착력이 크게 감소하였다. 또한, CTP에 Ni 함량이 증가할수록 산화전극 표면에 부착 성장한 미생물 생체량이 증가하였으며, 내부저항이 점차 감소하였다. CTP 4g과 Ni 5.9mmol을 혼합하여 제조한 결합제로 제작한 산화전극의 경우 미생물연료전지의 최대전력밀도는 738.11 mW/m²로서 가장 큰 값을 보였으며, 내부저항은 146.19 Ω로서 가장 낮았다. 이 값은 Nafion 용액을 결합제로 사용하여 제작한 대조구 산화전극과 비교할 때 최대전력밀도는 23.68% 높았으며, 내부저항은 33.82% 낮았다. CTP와 Ni을 혼합한 물질은 미생물연료전지의 산화전극제작에 사용할 수 있는 우수한 결합제이다.

      • 니켈 함유 콜타르 피치와 팽창흑연, 탄소나노튜브를 이용하여 제작한 미생물연료전지 산화전극의 성능평가

        윤형선,송영채,최태선 한국폐기물자원순환학회(구 한국폐기물학회) 2015 한국폐기물자원순환학회 추계학술발표논문집 Vol.2015 No.-

        미생물연료전지(Microbial fuel cells, MFCs)의 성능은 미생물이 부착 성장하는 산화전극의 활성에 의해 크게 영향을 받는다. 미생물연료전지의 산화전극 활성은 전극표면의 높은 생물친화도, 미생물이 부착성장 할 수 있는 넓은 표면적, 전기전도도 등에 의해서 결정된다. 지금까지 연구되어 온 미생물연료전지의 산화전극 재료들은 주로 다공성유리탄소, 탄소천, 탄소섬유 브러쉬, 흑연펠트, 흑연섬유 등의 탄소계열의 전도성 물질들이었다. 그러나, 이러한 탄소계열 물질들은 그 종류에 따라 비표면적이 작거나, 표면이 소수성이며, 금속과 비교할 때 전도성이 좋지 않은 특성을 가진 것들이 많다. 그러나, 서로 다른 특성을 가지는 탄소계열 물질들을 동시에 사용함으로서 각각의 재료들이 가지는 단점들을 보완함으로서 높은 활성을 가지는 미생물연료전지 산화전극을 제작하고자 하는 시도들이 이루어지고 있다. 그러나, 탄소계열 물질들을 동시에 사용하기 위해서는 이러한 재료들을 서로 혼합하고 내부적으로 결합시키기 위한 결합제가 반드시 필요한데 완성된 산화전극의 활성은 결합제의 종류에 의해서 크게 영향을 받는다. 지금까지는 주로 Nafion 용액, 에폭시 등의 고분자 물질들을 결합제로 사용하여 왔는데, Nafion 용액은 전도성 높고 친수성 물질이라는 장점이 있지만 부착력이 낮고 가격이 비싼 고가의 물질이라는 한계점을 가지고 있다. 또한, Epoxy는 부착력이 강한 반면 전도성이 없는 소수성 물질이라는 단점이 있다. 본 연구에서는 콜타르 피치(Coal tar pitch, CTP)에 니켈(Nickel, Ni)을 다양한 비율로 혼합하여 결합제를 제조하고, 이를 이용하여 제작한 팽창흑연과 탄소나노튜브 산화전극의 성능을 회분식 미생물연료 전지를 이용하여 평가하였다. 산화전극 제작에 사용된 결합제의 CTP 양이 적을수록, 전기적 활성은 증가하였으나 부착력이 크게 감소하였다. 또한, CTP에 Ni 함량이 증가할수록 산화전극 표면에 부착 성장한 미생물 생체량이 증가하였으며, 내부저항이 점차 감소하였다. CTP 4g과 Ni 5.9mmol을 혼합하여 제조한 결합제로 제작한 산화전극의 경우 미생물연료전지의 최대전력밀도는 738.11 mW/㎡로서 가장 큰 값을 보였으며, 내부저항은 146.19 Ω로서 가장 낮았다. 이 값은 Nafion 용액을 결합제로 사용하여 제작한 대조구 산화전극과 비교할 때 최대전력밀도는 23.68% 높았으며, 내부저항은 33.82% 낮았다. CTP와 Ni을 혼합한 물질은 미생물연료전지의 산화전극제작에 사용할 수 있는 우수한 결합제이다.

      • 미생물연료전지 스택에 따른 가축분뇨 내 유기물의 에너지 전환 효율 연구

        김태영,장재경,강석원,장인섭,김현우,백이,성제훈,김영화 한국폐기물자원순환학회 2017 한국폐기물자원순환학회 학술대회 Vol.2017 No.05

        미생물연료전지(MFC)는 폐기물 속에 포함된 유기물을 전기로 전환하는 시스템으로 스케일업(scale-up)과 전압 및 전류 향상을 위해서는 미생물연료전지의 스택(stack)이 필요하다. 미생물연료전지의 전압을 향상시키기 위해서는 직렬연결, 전류를 증가시키기 위해서는 병렬연결이 필요하며 각 연결방법에 따른 유기물 제거와 전력생산의 관계는 폐기물 처리와 에너지 전환 효율적인 측면에서 중요한 인자이며 이에 대한 연구는 미비한 실정이다. 본 연구는 2개의 미생물연료전지(MFC 1, 2) 셀을 미연결, 직렬 연결, 병렬 연결하였을 때 유기물 변화와 전류 발생량을 모니터링한 후 이에 따른 쿨롱효율을 분석하여 각 연결에 따른 유기물 변화와 에너지 전환 효율에 따른 효과적인 스택 방법을 제시하고자 한다. 미연결된 미생물연료전지(MFC unit 1, 2), 직렬 연결된 미생물 연료전지(MFC 1-2), 병렬연결된 미생물연료전지(MFC 1//2)의 하루 동안 변화된 화학적 산소 요구량(COD)는 각각 163mg, 213mg, 194mg으로 직렬 연결된 미생물연료전지에서 가장 높은 유기물 제거율을 보였다. 이 때 발생된 평균 전류는 각각 2.13mA, 2.83mA, 4.14mA로 병렬 연결된 미생물연료전지에서 가장 높은 전류 값을 보였으나 유기물 제거량과 전류 발생량으로부터 계산된 쿨롱효율은 각각 19.8%, 10.5%, 15.2%로 미연결된 미생물연료전지에서 가장 높은 쿨롱효율 값을 나타났다. 비록 각기 다른 유기물 변화, 전류 생산, 쿨롱효율 값을 보였지만 각 연결에 따른 미생물연료전지의 성능을 측정하였을 때 비슷한 전력 값이 생산된 것을 확인할 수 있었으며 이는 각 연결 방법에 따른 에너지 손실이 다르다는 것으로 추측할 수 있다. 이러한 결과를 바탕으로 미생물연료전지 스택시 병렬연결 방법이 폐기물 내에 유기물 처리와 에너지 전환 효율 적인 측면에서는 가장 효과적인 방법이라고 판단된다.

      • 음폐수 초기 pH 및 기질교체량에 따른 미생물연료전지 운전 특성 평가

        임지영,김진한 한국폐기물자원순환학회 2014 한국폐기물자원순환학회 학술대회 Vol.2014 No.11

        2013년 폐기물 해양배출 금지로 인하여 음폐수 육상처리가 의무화되었으며, 그로 인하여 음폐수 육상처리방안에 대한 새로운 방안들이 제시되고 있다. 음폐수와 같은 고농도의 폐수는 많은 유기물을 함유하고 있기 때문에, 이러한 유기물로부터 에너지를 회수하는 방안들이 연구되고 있으며, 그중 하나가 미생물 에너지 전환기술이다. 미생물연료전지는 혐기성 조건에서 미생물을 이용하여 유기물질을 에너지발생원으로 이용하여 전기를 생산한다. 따라서, 화학에너지를 전기에너지로 변화시키므로 별도의 오염물질을 발생시키지 않아 친환경 에너지 전환기술로 주목 받고 있다. 본 연구에서는 Single Chamber인 미생물연료전지를 이용하여 음폐수 초기 pH 및 기질교체율에 따른 미생물 연료전지의 성능에 대해 알아보기 위하여 실험을 진행하였다. 대상폐수는 수도권매립지관리공사 내 음폐수처리장 혐기성소화조 처리수(pH 7.56, SCODcr 956 mg/L)를 사용하였다. 산화전극과 환원적극으로 각각 Graphite felt, Carbon cloth를 사용하였으며, 분리막은 Ceramic막을 사용하였고, 외부저항 1,000Ω, 운전온도 35℃이었다. 실험은 초기 pH를 5~9로 설정하여 batch로 진행하였으며, 그 결과 중성 조건 즉, pH 6, 7에서 전력발생량이 가장 안정적으로 발생되는 것을 확인할 수 있었다. 또한, 기질교체율을 1%, 2%, 4%, 6%, 8%, 10%의 경우로했을 경우, 10%일 때 기질교체시 충격부하에 의해 미생물연료전지의 성능이 저하되는 것을 알 수 있었다. 이를 바탕으로, 기질교체율을 충격부하의 영향을 받지 않는 1%, 2%, 4%, 6%, 8%로 설정하였고 초기 pH를 6~7로 조절하여 각 pH 별 기질교체율에 따른 미생물연료전지의 전력발생량을 비교하였다. 실험은 매일 같은 시간 기질을 교체하는 Fed-batch로 진행하였다. 음폐수 초기 pH 및 기질교체율에 따른 미생물연료전지의 성능을 비교한 결과, pH 6일 경우 기질교체율 1%, 2%, 4%, 6%, 8%에서 평균 0.552 V ~ 0.605 V의 범위를 보였으며, 최대값은 기질교체율 6%에서 나타났다. 또한 pH 7, 기질교체율 1%, 2%, 4%, 6%, 8%에서 전력발생량은 평균 0.486 V ~ 0.569 V의 범위이었으며 pH 6의 경우와 마찬가지로 기질교체율 6%에서 최대값을 나타내었다.

      • 미생물연료전지 전극제작을 위한 결합제 연구

        송영채,허드슨 티모시,우정희 한국폐기물자원순환학회 2013 한국폐기물자원순환학회 학술대회 Vol.2013 No.2

        미생물연료전지의 전극재료 중 결합제는 전극의 성능, 내구성 및 비용 등을 결정짓는 핵심 물질 중 하나이다. 전극의 결합제는 기본적으로 전극을 구성하는 기본물질들과 결합력이 좋아야 하고, 전극물질들과 집전체간의 전자전달이 가능한 물질이여야 한다. 따라서, 전극 결합제는 미생물연료전지의 성능향상을 위해 필수적인 역할을 담당한다. 좋은 결합제는 전극의 성능을 향상시킬 수 있어야 하고, 전극물질과의 접착력과 전극물질의 본성 등을 유지시킬 수 있어야 한다. 지난 수년 동안 미생물연료전지의 성능향상을 위해 다양한 결합제에 대한 연구가 이루어 졌으며, 결합제를 활용하기 위한 다양한 기술들이 연구되어 왔다. 현재, 많은 연구자들이 여러 장점들을 가지고 있는 탄소나노튜브를 미생물연료전지의 산화 및 환원전극 제조를 위한 기초물질로 이용하고 있는데, 탄소나노튜브는 가공성이 나쁘고, 용해성이 낮은 등 전극제작에 있어서 몇몇 결점들을 가지고 있다. 이러한 탄소나노튜브의 결점을 보완하면서 친수성이고, 전도성이 높은 결합제로 종종 Nafion 용액을 사용해오고 있는데 이는 고가이며, 결합력이 약하여 미생물연료전지의 실용화에 걸림돌이 되고 있다. 실리카겔은 친수성물질로 알려져 있으며, 물을 따라 이동하는 양이온의 전도성이 좋은 물질로 평가된다. 또한, 헤테로 다중산은 양이온 전도성을 향상시킨다는 많은 연구결과들이 보고된 바 있다. 따라서, 본 연구에서는 헤테로 다중산과 실리카겔을 미생물연료전지의 전극 결합제로 사용하여 고가의 전극결합제인 Nafion 용액을 대체하고자 하였다. 헤테로 다중산을 실리카겔에 도핑하여 결합제를 제조하고 이를 환원전극제작에 사용하였다. 제작된 환원전극의 성능은 3차원 공기환원전극 미생물연료전지를 이용하여 평가한 결과 전력밀도 및 내구성이 헤테로 다중산을 실리카겔에 도핑한 결합제를 이용한 환원전극의 성능이 Nafion 용액을 결합제로 사용한 환원전극보다 우수한 것으로 평가되었다. 헤테로 다중산을 실리카겔에 도핑하여 제조한 결합제는 큰 고가의 Nafion 용액을 대체할 수 있을 것으로 평가되었다.

      • KCI등재

        미생물연료전지(MFC)에서 전류차단법(current interrupt technique)을 이용한 활성화전압손실(activation loss)과 저항전압손실(Ohmic loss)의 측정

        박경원(Kyung Won Park),오상은(Sang Eun Oh) 大韓環境工學會 2010 대한환경공학회지 Vol.32 No.4

        미생물연료전지는 미생물이 유기물을 분해하면서 전기를 발생시킨다. 미생물연료전지는 여러 분야로 응용이 가능하며 현재 생산되는 전력이 낮기 때문에 상용화가 되기 위해서는 미생물연료전지(MFC)의 전력을 증진시키는 방안 연구가 필요하다. 미생물연료전지(MFC)의 전력을 증진시키기 위해서는 산화, 환원전극에서의 활성화전압손실(Activation losses)과 저항전압손실(Ohmic losses)을 줄여야 하며 활성화전압손실과 저항전압손실의 정확한 측정과 이를 줄이기 위한 인자를 찾는 것이 중요하다. 본 연구에서는 H형태의 미생물연료전지(Microbial Fuel Cell, MFC)에서 전류차단법(Current interruption)을 이용하여 산화전극 및 환원전극에서의 활성화 전압손실과 저항전압손실을 측정하였다. H형태의 미생물연료전지에서 백금이 코팅된 전극(0.5mg/cm2; 10% Pt)을 환원전극으로 이용하였음에도 환원전극 전압손실이 산화전극 전압손실보다 4배 가량 큼을 알 수 있었다. 전류차단법(Current interruption)에 의하여 구한 저항전압손실 값(1146 Ω) 과 impedance에 의하여 구한 내부저항(1167 Ω)은 거의 일치하였다. 또한 산화, 환원전극 활성화 전압손실의 합은 전지(cell)의 활성화 전압손실과 일치하였다. Electricity can be directly generated from organic matter even wastewaters using a microbial fuel cell. To achieve high power in MFCs, finding factors decreasing activation and Ohmic losses is very important. In this study we determined activation loss at the anode and cathode and Ohmic loss using the current interruption technique in a H-type MFC. Activation loss at the cathode was four times higher that that of anode activation loss even if pt-coated carbon (0.5mg/cm2; 10% Pt) was used as the cathode. Ohmic loss determined using current interruption technique (1146 Ω) was almost same as the internal resistance (1167 Ω) measured using AC impedance. The sum of activation losses at the anode and cathode was the same as the value of activation loss of the cell.

      • A-25 : 미생물연료전지의 성능에 대한 3차원 공기환원전극 침지깊이의 영향

        송영채,최태선,우정희 한국폐기물자원순환학회(구 한국폐기물학회) 2013 한국폐기물자원순환학회 추계학술발표논문집 Vol.2013 No.-

        지금까지 연구된 여러 가지 형상의 미생물연료전지들의 특징들을 조합하여 운전이 용이하고 규모확대가 가능하며 전력생산 성능이 대단히 우수한 3차원 공기환원전극 미생물연료전지를 고안하였으며, 합성폐수를 이용한 성능시험을 수행하였다. 본 연구에 사용된 3차원 공기환원전극 미생물연료전지는 1개의 산화전극부, 4개의 배수구, 그리고 산환전극부 상부에 설치된 1개의 환원전극부로 구성하였다. 미생물연료전지 하단에는 다공판으로 된 유입부를 설치하여 폐수가 산화전극부로 유입되도록 하였으며, 폐수는 산화전극부를 통과한 뒤 환원전극부의 배수구로 이동하도록 설계되었다. 산화전극부에는 EG(Expended Graphite)와 MWCNT(Multi-Wall Carbon Nano Tube)를 스테인리스망에 스크린 프린팅하여 제작된 산화전극을 설치하였고, 환원전극부에는 EG(Expended Graphite)와 MWCNT(Multi-Wall Carbon Nano Tube)에 FePc 및 CuPc를 고정한 촉매를 스테인리스망에 스크린 프린팅하여 제작된 환원전극을 설치하였다. 배수로는 환원전극의 높이의 1cm, 2cm, 3cm, 5cm에 배수구를 각각 설치하여 환원전극 침지깊이에 대한 영향을 평가하였다. 준비된 미생물연료전지는 초기운전을 위하여 혐기성 소화조에서 채취한 슬러지를 식종하였으며, acetate, phosphate buffer solution, minerals, vitamins로 구성된 합성폐수를 연속 주입하였다. 미생물연료전지를 운전하는 동안 DMM(digital multimeter, Keithley 2700)과 컴퓨터를 이용하여 전지에서 발생하는 전압을 관측하였다. 환원전극부의 침지깊이를 변화시킨 뒤 전압이 안정화 되었을 때 외부회로를 개방하여 OCV 값을 측정하였으며, 외부저항을 단계적으로 감소시키는 방법으로 분극 실험을 수행하였다. 이때 미생물연료전지에서 얻어진 최대전력수율은 환원전극의 침지깊이에 따라서 1cm < 5cm ≤ 2cm < 3cm 순으로 측정되었다.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼