RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재SCOPUS

        Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea

        최선규,최상훈,Choi, Seon-Gyu,Choi, Sang-Hoon The Korean Society of Economic and Environmental G 1995 자원환경지질 Vol.28 No.6

        Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

      • KCI등재

        비보강받침접합의 용접강도와 설계도표

        최선규,유정한,이강민,박재우,Choi, Sun-Kyu,Yoo, Jung-Han,Lee, Kang-Min,Park, Jai-Woo 한국강구조학회 2012 한국강구조학회 논문집 Vol.24 No.2

        Unstiffened seated connections (USC) ensure easy installation and safety during erection, thereby making the process more economical. USCs consist of a seat angle for carrying the beam's reactions and a top angle to provide beam stability. These angles are bolted or welded to the beam and supporting member. This paper sought to propose a design table for the weld strength of such connections obtained from the elastic vector method (EVM) and the instantaneous center-of-rotation method (ICM) in terms of calculating the eccentricity. Also, the proposed design table is compared with both AISC and KBC specifications. 비보강받침접합(Unstiffened Seated Connection, USC)은 시공의 편의성과 설치시의 안정성 및 경제성이 있는 단순접합의 한 종류이다. 비보강받침접합은 하부ㄱ형강과 상부ㄱ형강으로 구성되며 하부ㄱ형강은 보의 단부반력전체를 지지하며, 상부ㄱ형강은 보의 안정을 위하여 설치한다. 상부와 하부ㄱ형강은 볼트 또는 용접에 의해 보와 지지부재에 접합된다. 본 연구에서는 비보강받침접합의 용접강도에 대한 실용적인 설계절차와 함께 용접부의 편심계산시 탄성벡터법(EVM)과 순간회전중심법(ICM)으로 소요지압길이에 근거한 설계도표를 제안하였다. 또한 제안한 설계방법에 의한 용접강도를 AISC와 KBC기준에 따라 비교하였다.

      • KCI등재SCOPUS

        한국 동남부지역 금·은 광상산 에렉트럼의 화학조성

        최선규,박맹언,최상훈,Choi, Seon-Gyu,Park, Maeng-Eon,Choi, Sang-Hoon 대한자원환경지질학회 1994 자원환경지질 Vol.27 No.4

        Gold and/or silver mineralization in the southeast province, Korea, occurred in hydrothermal quartz vein that fills fracture zones in Cretaceous volcanic and sedimentary rocks of the Gyeongsang basin or granites and Precambrian gneiss. Most of the gold-silver-bearing veins in the province occur in Hapcheon, Suncheon and Haman-Gunbuk area where they are associated with Cretaceous Bulgugsa granites. On the basis of the Ag/Au ratio on amounts produced and ore grades, mode of occurrence, and associated mineral assemblages, hydrothermal Au-Ag deposits in southeast province, Korea, can be classified as follows: pyrite-type gold deposit (Group IIB, Samjeong and Sangchon deposits), antimony-type gold-silver deposit (Group IV, Gisan and Geochang deposits), and antimony-type silver deposit (Group V, Sanggo, Seweon, Seongju and Gahoe deposits). All of the gold-silver deposits in the province are generally characteristics of the gold-silver or silver-dominant type deposit which contains more silver-bearing minerals than those deposits in central Korea. The gold-silver mineralization in the deposits consist of two generation; the early characterized by gold precipitation and the late represented by silver-rich (as silver-bearing sulfosalts minerals) mineralization. All but one deposit (Samjeong deposit) having relatively lower Au content in electrum values between ${\approx}20$ and ${\approx}50$ atomic %. The mineralogical data on electrum-sphalerite and/or arsenopyrite geothermometry and fluid inclusion data indicate that the gold and silver mineralizations were occurred at temperatures of $190{\sim}280^{\circ}C$ and $150{\sim}180^{\circ}C$, respectively. These suggest that the gold-silver mineralization in the province occurred in the lower temperature and pressure conditions as epithermal-type hydrothermal vein deposit.

      • KCI등재

        충청북도(忠淸北道) 영동지역(永同地域) 금은광상(金銀鑛床)의 금은광화작용(金銀鑛化作用)에 관한 연구(硏究)

        최선규,지세정,박성원,Choi, Seon Gyu,Chi, Se Jung,Park, Sung Won 대한자원환경지질학회 1988 자원환경지질 Vol.21 No.4

        Most of the gold (-silver) vein deposits at Yeongdong District are mainly distributed in the precambrian metamorphic rocks. Based on the Ag/Au total production and ore grade ratios, the chemical composition of electrum and the associated sulfides, the gold(-silver) deposits at Yeongdong District may be classified into 4 classes: pyrrhotite - type gold deposits( I), pyrite - type gold deposits (IT A; massive vein), pyrite - type gold deposits (II B; nonmassive vein) and argentite - type gold - silver deposits(III). The chemical study on electrum(including native gold) revealed that Au content (2.8 to 92.4 atomic%) of electrums varies very widely for different classes of deposits. The Au content of electrum associated with pyrrhotite (Class I), ranging from 47.1 to 92.4 atomic% Au, is clearly higher than that associated with pyrite (Classes IIA, IIB and III). In contrast, classes I, II, and III deposits do not show clear differences in Au content of electrum. In general, pyrrhotite - type gold deposits(I) are characterized by features such as simply massive vein morphology, low values in the Ag/Au total production and ore grade ratios, the absence or rarity of silver - bearing minerals except electrum, and distinctively simple mineralogy. Although the geological and mineralogical features and vein morphology of pyrite - type gold deposits(IIA)are very similar to those of pyrrhotite - type gold deposits (I), Class II A deposits reveal significant differences in the associated iron sulfide (i. e. pyrite) with electrum and Au content of electrum. The Ag/Au total production and ore grade ratios from Class II A deposits are relatively slightly higher than those from Class I deposits. Pyrite - type gold deposits(II B) and argentite - type gold - silver deposits (III) have many common features; complex vein morphology, medium to high values in the Ag/Au total production and ore grade ratios and the associated iron sulfide (i. e. pyrite). In contrast to Class II B deposits, Class III deposits have significantly high Ag/Au total production and ore grade ratios. It indicates distinct difference in the abundance of silver minerals (i. e. native silver and argentite). The fluid inclusion analyses and mineralogical data of electrum tarnish method indicate that the gold mineralization of Classes I and II A deposits was deposited at temperatures between $230^{\circ}$ and $370^{\circ}C$, whereas the gold (-silver) mineralization of Classes ITB and ill formed from the temperature range of $150^{\circ}-290^{\circ}C$. Therefore, Classes I and IT A deposits have been formed at higher temperature condition and/or deeper positions than Classes IIB and III.

      • KCI등재

        Gold-Silver Mineralization of the Geojae Area

        최선규,지세정,윤성택,고용권,유재신,Choi, Seon-Gyu,Chi, Se-Jung,Yun, Seong-Taek,Koh, Yong-Kwon,Yu, Jae-Shin The Korean Society of Economic and Environmental G 1989 자원환경지질 Vol.22 No.4

        경남거제지역 금(金)-은광상(銀鑛床)들은 후기 백악기 안산암류와 화강섬록암(83 m.y.)내의 열극을 충진한 함금(含金)-은(銀) 열수맥상(熱水脈狀) 광체로 구성된다. 열수광화작용(熱水鑛化作用)은 구조운동에 의하여 시기적으로 3회에 걸쳐 진행되었다. 초기 제$370^{\circ}C$의 고온에서 후기 $200^{\circ}C$에 이르는 제 I, II 광화기(鑛化期)에서는 각기 상이한 열수계(熱水系)에 의하여 석영, 유화물이 침전하였으며, $320^{\circ}C$를 전후로 하여 광화류체(鑛化流體)의 비담(沸膽)현상이 일어났다. 제 I, II 광화작용(鑛化作用)시의 압력은 <100기압이고, 심도는 500~1,250m였다. 금(金)-은(銀)의 주광화시기(主鑛化時期)인 광화(鑛化) I 기(期)의 공생광물에 대한 유체포유물(流體包有物) 및 광물열수학적(鑛物熱水學的) 연구에 의하면, 황철석, 섬아연석, 황동석은 $290^{\circ}C$ 이상의 고온에서 비담작용(沸膽作用)과 동시에 정출하였고, 사면동석, 에렉트렘, 스튜자이트는 금(金)-유황종(硫黃種)의 농도가 $10^{-3}{\sim}10^{-4}$molal, 상당염농도(相當鹽濃度)가 2~6wt.% NaCl인 광화유체(鑛化流體)로부터 $220{\sim}260^{\circ}C$, 유황 및 산소분압이 각각 $10^{-11.8}{\sim}10^{-14}$, $10^{-35}{\sim}10^{-36}$ atm인 물리 화학적 환경하에서 침전하였다. 균질화(均質化) 온도와 염농도(相當鹽濃度)와의 관계는 천수류입(天水流入)에 의한 광화류체(鑛化流體)의 냉각(冷却) 및 희석(稀釋)작용이 광석광물 침전의 주된 메키니즘이었음을 지시해 주며, 유체내(流體內) 환원(還元) 유황종(硫黃種)($H_2S$)의 감소에 따른 금류화복합체(金硫化複合體)($Au(HS)_2$) 의 파괴로 금(金)의 침전이 유도되었으리라 사료된다. 유황 및 탄소, 산소 안정동위원소(安定同位元素) 연구(硏究)결과, 광화류체내(鑛化流體內)의 유황 및 탄소는 심부화성(深部火成)기원이었고, 방해석의 산소 안정동위원소(安定同位元素)값으로부터 열수계(熱水系)에서 천수(天水)가 지배적인 역할을 하였으리라 사료된다. The electrum-silver-sulfide mineralization of the Geojae island area was deposited in three stages (I, II, and carbonate) of quartz and calcite veins that crosscut Late Cretaceous volcanic rocks and granodiorite(83 m.y.). Stages I and II were terminated by the onset of fractunng and breCCIation events. Fluid inclusion data suggest that the gold-sulfide-bearing stages I and II each evolved from an initial high temperature( near $370^{\circ}C$) to a later low temperature(near $200^{\circ}C$). Each of those stages represented a separate mineralizing system which cooled prior to the onset of the next stage. The relationship between homogenization temperature and salinity in stages I and II suggests a complex history of boiling, cooling and dilution. Evidence of boiling indicates a pressure of < 100 bars, corresponding to a depth of 500 to 1,250m assummg hthostatlc and hydrostatic pressure regimes, respectively. Fluid inclusion and mineralogical evidence suggest that the electrum-silver mineralization was deposited at a temperature of $220-260^{\circ}C$ from ore fluids with salinities between 1.9 and 8.1 equivalent wt.% NaCl. Total sulfur concentration is estimated to be $10^{-3}$ to $10^{-4}$ molal. The estimated $fs_2$ and $fo_2$ range from $10^{-11.8}$ to $10^{-14}$ atm and $10^{-35}$ to $10^{-36}$ atm, respectively. The chemical conditions indicate that the dominant sulfur species in the ore forming fluids was a reduced form($H_2S$). Rapid cooling and dilution of ore-forming fluids by mixing with less-evolved meteoric waters led to gold-silver deposition through the breakdown of the bisulfide complex($Au(HS)_2$) as the activity of $H_2S$ decreased.

      • KCI등재SCOPUS

        Petrochemical Study of the Gadaeri Granite in Ulsan Area, Kyeongsang Province

        최선규,위수민,Choi, Seon-Gyu,Wee, Soo-Meen The Korean Society of Economic and Environmental G 1994 자원환경지질 Vol.27 No.5

        The Gadaeri granite near Ulsan mine is an oval-shape isolated granitic body, and is genetically related to the iron-tungsten mineralization. The Gadaeri granite exhibits calc-alkaline and I-type characteristics, and generally shows the micrographic texture which indicates the shallow depth of emplacement. Consideration of the stratigraphic thickness of Ulsan formation and minimum-melt compositions suggests that the bulk magma crystallized at pressure of 0.5~2.0 kbar under water saturated condition. The evolutionary trend observed in the studied rocks represents that feldspar fractional crystallization has been a major magmatic process at the Gadaeri granite pluton. Different chemical characteristics between the Gadaeri and the Masan-Kimhae granites cannot be explained by fractional crystallization or different degrees of partial melting, and it reflects that the magma source for Gadaeri granite was different from that of the Masan and Kimhae granites.

      • KCI등재SCOPUS

        강원도 옥계 금광상에 관한 광물학적·지화학적 연구

        최선규,최상훈,이현구,Choi, Seon-Gyu,Choi, Sang-Hoon,Lee, Hyun Koo 대한자원환경지질학회 1997 자원환경지질 Vol.30 No.1

        Gold mineralization of the Ogkye gold mine was deposited mainly in quartz veins up to 150 cm wide which occupy fissures in Cambrian Pungchon limestone. Ore minerals are relatively simple as follows: pyrite, arsenopyrite, pyrrhotite, sphalerite, electrum and galena. On the basis of the Ag/Au ratio on ore grades, mode of occurrence and assoicated mineral assemblages, the Ogkye gold deposit can be classified as pyrite-type gold deposit (Group IIB). Fluid inclusion data indicate that ore minerals were deposited between $400^{\circ}$and $230^{\circ}C$ from relatively dilute fluids (0.2 to 7.3 wt.% eq. NaCl) containing $CO_2$. The ore mineralization resulted from a complex history of $CO_2$ effervescence and local concomitant boiling coupled with cooling and dilution of ore fluids. Gold deposition was likely a result of decrease of sulfur activity caused by sulfide deposition and/or $H_2S$ loss accompanying fluid unmixing. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=3.5{\sim}5.9$‰) are consistent with ${\delta}^{34}S_{H_2S}$ value of 4.8 to 6.1‰, suggesting mainly an igneous source of sulfur partially mixed with wall-rock sulfur.

      • KCI등재SCOPUS

        한국 백악기 주요 금속광상의 예측 탐사 : W-Mo 광화작용을 중심으로

        최선규,강정극,이종현,Choi, Seon-Gyu,Kang, Jeonggeuk,Lee, Jong Hyun 대한자원환경지질학회 2019 자원환경지질 Vol.52 No.5

        The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical characteristics of magma with different emplacement depth. The Cretaceous metallic mineralization has been carried out over a wide range of time periods from ca. 115 to 45 Ma (main stage; ca. 100 to 60 Ma) related to post-orogenic igneous activity, and spatial distribution patterns of most metal deposits are concentrated along small granitic stocks. The late Cretaceous metal deposits in the Gyeonggi and Yeongnam massifs are generally distributed along the boundary among the Gongju-Eumseong fault system and the Yeongdong-Gwangju fault system and the Gyeongsang Basin, most of them are in the form of a distal epithermal~mesothermal Au-Ag vein or a transitional mesothermal Zn-Pb-Cu vein. On the other hand, diverse metal commodities in the Taebaeg Basin, the Okcheon metamorphic belt and the Gyeongsang Basin are produced from various deposit types such as skarn, carbonate-replacement, vein, porphyry, breccia pipe, and Carlin type. In the late Cretaceous metallic mineralization, various mineral deposits and commodities were induced not only by the pathway of the hydrothermal solution, but also by the diversity of precipitation environment in the proximity difference of the granitic rocks. The diversity of these types of Cretaceous deposits is fundamentally dependent on the geochemical characteristics such as degree of differentiation and oxidation state of related igneous rocks, and ore-forming fluids generally exhibit the evolutionary characteristics of intermediate- to low-sulfur hydrothermal fluids.

      • KCI등재SCOPUS

        Genetic Environments of Hydrothermal Copper Deposits in Ogsan Mineralized Area, Gyeongsangbukdo Province

        최선규,최상훈,윤성택,이재호,소칠섭,Choi, Seon-Gyu,Choi, Sang-Hoon,Yun, Seong-Taek,Lee, Jae-Ho,So, Chil-Sup The Korean Society of Economic and Environmental G 1992 자원환경지질 Vol.25 No.3

        옥산지역에 위치하는 황학동광상은 초기백악기 퇴적암류내에 발달한 열극을 충진한 열수맥상 광상으로, 구조운동에 수반되어 3회에 걸쳐 생성된 석영 및 방해석맥으로 구성된다. 주된 금속광물로는 황철석, 자류철석, 황동석, 섬아연석, 방연석, 적철석 및 Ag-, Pb-, Bi-sulfosalts로, 이들의 침전은 주로 광화 제 1 기의 0.5~7.6 wt.% NaCl 상당염농도를 갖는 광화유체로부터 $370^{\circ}C$ 에서 약 $200^{\circ}C$ 에 걸쳐 진행되었으며, 광화 작용시의 압력은 <180 bar, 섬도는 700~2,400 m 였다. 광상내에서 보여주는 광물공생관계에 의한 열역학적 고찰과 유체포유물 및 안정동위원소 연구결과 등으로 미루어 본 광상광화유체내 Cu는 주로 chloride complex 상으로 이동되었으며, 주로 광화유체의 냉각작용과 이에 의한 지화학적 환경요인들($fs_2$, $fo_2$, pH)의 변화에 기인하여 침전되었음을 알수 있다. 유황안정동위원소 연구결과, 주광화시기인 광화1기중 광화유체의 ${\delta}^{34}S_{H_2S}$ 값이 초기 8.2‰ 에서 후기 4.7‰ 로 점차 감소함은 광화유체의 비등에 수반되어 수소이온농도와 함께 산소분압이 점진적으로 증가한 결과로 해석되며, 광화유체의 수소 및 산소동위원소 값으로부터 열수계에서 천수가 지배적인 역할을 하였음을 알수 있다.

      • KCI등재SCOPUS

        Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area

        최선규,이재호,윤성택,소칠섭,Choi, Seon-Gyu,Lee, Jae-Ho,Yun, Seong-Taek,So, Chil-Sup The Korean Society of Economic and Environmental G 1992 자원환경지질 Vol.25 No.4

        Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼