RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 가우시안 혼합 모델을 이용한 네트워크 침입 탐지 시스템

        박명언(Myung-Aun Park),김동국(Dong-Kook Kim),노봉남(Bong-Nam Noh) 한국정보과학회 2005 한국정보과학회 학술발표논문집 Vol.32 No.2

        초고속 네트워크의 폭발적인 확산과 함께 네트워크 침입 사례 또한 증가하고 있다. 이를 검출하기 위한 방안으로 침입 탐지 시스템에 대한 관심과 연구 또한 증가하고 있다. 네트워크 침입을 탐지위한 방법으로 기존의 알려진 공격을 찾는 오용 탐지와 비정상적인 행위를 탐지하는 방법이 존재한다. 본 논문에서는 이를 혼합한 하이브리드 형태의 새로운 침입 탐지 시스템을 제안한다. 기존의 혼합된 방식과는 다르게 네트워크 데이터의 모델링과 탐지를 위해 가우시안 혼합 모델을 사용한다. 가우시안 혼합 모델에 기반한 침입탐지 시스템의 성능을 평가하기 위해 DARPA'99 데이터에 적용하여 실험하였다 실험 결과 정상과 공격은 확연히 구분되는 결과를 나타내었으며, 공격 간의 분류도 상당 수 가능하였다.

      • KCI등재

        반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측

        성규열,박명언,고용권,김천수 대한자원환경지질학회 2002 자원환경지질 Vol.35 No.1

        화강암지역에서 산출되는 국내 지하수의 화학조성은 주로 Ca-HCO$_{3}$와 Na-HCO$_{3}$, 형에 속하며, 일부는 Ca-(C1+SO$_{4}$)또는 Na-(Cl+SO$_{4}$)형의 특성을 나타낸다. 회장암 지역의 용출수는 Ca-HCO$_{3}$ 형에, 지하수는 Na-HCO$_3$ 형에 도시된다. 빗물-화강암 반응에 대한 반응경로 모델링 결과는 초기 Ca-Cl형에서 시작하여 Ca-HCO$_{3}$을 거친 후, 최종적으로 Na-HCO$_{3}$형으로 진화하는 경향을 보인다 빗물-화장암 반응 역시 빗물-화장암 반응에서와 유사하게 진화되는 경향을 보이며, 모델링 결과는 현장자료와 잘 일치된다. 빗물-화장암/회장암 반응경로 모델링 결과, 반응이 진행됨에 따라 수소이온 활동도는 점차 감소(pH는 증가)하며, 양이온의 농도는 pH의 변화에 따른 모암을 구성하는 광물들의 순차적 용해, 2차 생성광물의 침전 및 재용해 등에 의해 다양한 농도변화를 보여준다 빗물-화강암의 반응비에 따라 깁사이트, 적철석, 망간산화물, 카오리나이트, 실리카, 녹니석, 백운모, 방해석, 로몬타이트, 프레나이트, 아날심의 순으로 침전이 발생하며, 빗물-회장암의 반응에서도 이와 동일한 침전순서를 보이지만 실리카의 침전이 없고 아날심 대신 파라고나이트가 침전된다. 빗물-화강암 반응에서는 실리카가 가장 우세한 광물이며, 밋물-회장암 반응에서는 카오리나이트가 가 장 우세한 광물이며, 전체적인 2차 생성광물의 침전량은 화강암보다 회장암 반응이 더 우세하다 The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼