RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 학위유형
          펼치기
        • 주제분류
          펼치기
        • 수여기관
          펼치기
        • 발행연도
          펼치기
        • 작성언어
          펼치기
        • 지도교수
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • Making theory: I. Producing physics and physicists in postwar America. II. Post-inflation reheating in an expanding universe

        Kaiser, David Isaac Harvard University 2000 해외박사(DDOD)

        RANK : 2943

        This dissertation examines the reinvention of theoretical physics in the United States through pedagogical means after World War II. Physics graduate student enrollments ballooned immediately after the war. The unprecedented enrollments forced questions of procedures and standards for graduate training as never before. At the same time, the crush of numbers spurred an increased bureaucratization and, at least some American physicists feared, a different system of values than what had prevailed during the quieter interwar period. Out of these new bureaucratic and pedagogical developments, theoretical physics became a recognized specialty within American physics, surrounded by new ideas about what theory was for and how students should be trained to do it. Two case studies focus on developments within theoretical physics after the war, using pedagogy as a lens through which to understand the links between practices and practitioners. Within nuclear and particle physics, as Part II discusses, young graduate students and postdoctoral fellows puzzled over how to calculate with, and how to interpret, the simple line-drawings introduced by Richard Feynman in 1948. The number of distinct pictorial forms, calculational roles, and attributed meanings for the simple stick-figures quickly multiplied: rather than commanding a single use or interpretation, the diagrams came to be used for a wide variety of distinct tasks. Some theorists clung to the diagrams even as they declared the original theoretical framework from which the diagrams had sprung to be “sterile” and “dead.” These young theorists drew the diagrams much the same way as Feynman had, yet read content into them which had no correlate in the older approaches. Part III uses pedagogy to make sense of a similar series of changes within the long-dormant field of gravitational physics. Einstein's gravitational field equations proved to be no more obvious or auto-interpreting than Feynman's diagrams had been. Physicists after the war crafted new theoretical practices with which to approach questions within gravitational theory. During the middle decades of this century, American graduate students in physics learned to treat Einstein's famous theory in ways which would have been totally unrecognizable to Einstein himself—even as these new recruits were being trained to “do” gravitational physics.

      • 고등학교 양자물리 수업 지도안 개발

        구성현 창원대학교 2019 국내석사

        RANK : 2943

        Physics is composed of various disciplines. At the beginning of the 20th century, the emergence of a new way of thinking that can explain the micro-world has led to the birth of the discipline 'quantum physics'. Various observations became possible by explaining the motion of particles in the micro-world. Quantum physics has become an essential science for the development of modern society. As the importance of modern technology emerged, the proportion of quantum physics increased in the curriculum. However, the revised curriculum in 2009 caused a lot of confusion in the field due to the large amount and content of excessive applications. The revised curriculum in 2015 solved the preceding problems, but lacked enough information to understand the basic concepts of quantum physics. In textbooks, there is no mention of why quantum physics has occurred. In addition, there is no intriguing introduction, and basic information on quantum physics is omitted. Through this study, we developed quantum physics auxiliary textbook and teaching guide plan to complement the problems. I have created a quantum physics auxiliary textbook that will stimulate students' interest and give a definition of 'quantum physics' and the overall flow. Based on this, I developed a teaching guide plan. Also, in order to achieve the nature and goals of the 2015 revised curriculum, we were careful when developing teaching materials and teaching plans. I introduced the introductory essay to induce students' interest, and designed a discussion class based on a simple question, so that I could develop the science core competence of thinking and communicating ability. It also explains precisely the definition of 'quantum physics' and the exact meaning of 'quantum', thereby enhancing understanding of science. This course introduces the typical characteristics of quantum physics so that students can understand the basic contents before introducing the unit. I described the history of science through the history and scientists of quantum physics. Then, I introduce the application field of quantum dot and understand the principle and phenomenon through 'inquiry activity'. This enabled us to develop science core competence, inquiry skills. In the case of physics Ⅱ, since the curriculum has not yet been applied, it is not possible to teach the students to the actual school. However, it is expected that the auxiliary textbook and teaching guide plan developed in this study will be very helpful to students and teachers in the revised curriculum in 2015. 물리학은 다양한 학문으로 이루어져 있다. 20세기 초, 미시세계를 설명할 수 있는 새로운 사고방식의 등장으로 ‘양자물리’ 라는 학문이 탄생하게 되었다. 미시세계의 입자의 운동을 설명하게 되면서 다양한 관측이 가능해졌다. 양자물리는 현대사회의 발전에 필수적인 학문으로 자리 잡았다. 이러한 현대기술의 중요성이 대두되면서 교육과정에서 양자물리의 비중이 증가하게 되었다. 하지만 2009년 개정 교육과정의 경우, 많은 분량과 과도한 응용분야에 대한 내용 때문에 현장에서 많은 혼란을 야기하였다. 2015년 개정 교육과정은 앞선 문제점들을 해결하였으나, 양자물리에 대한 기본 개념을 이해할 수 있는 내용이 부족하였다. 교과서의 경우, 왜 양자물리가 생기게 되었는지에 대한 내용이 없다. 또한 흥미를 유발하는 도입내용이 없으며, 양자물리에 대한 기본적인 내용이 생략되었다. 본 연구를 통해, 앞선 문제점을 보완할 수 있는 양자물리 부교재와 수업지도안을 개발하였다. 학생들의 흥미를 유발하고 ‘양자물리’에 대한 정의와 전체적인 흐름을 알 수 있는 양자물리 부교재를 만들었다. 그리고 이를 바탕으로 수업지도안을 개발하였다. 또, 2015 개정 교육과정의 성격과 목표를 달성 할 수 있는 수업을 위해 부교재와 수업지도안의 개발 시 유의하였다. 학생들의 흥미를 유발하기 위한 도입 글을 삽입하였으며, 간단한 질문을 바탕으로 토론수업을 진행하여 과학과 핵심역량인 사고력과 의사소통능력을 키울 수 있도록 설계하였다. 또한 ‘양자물리’에 대한 정확한 정의와 ‘양자’의 정확한 뜻을 설명하여 학문에 대한 이해를 높인다. 양자물리의 대표적인 특징을 소개하여, 단원 도입 전에 기본적인 내용을 이해할 수 있도록 한다. 과학자와 양자물리의 역사를 설명하여 과학사의 내용을 담았다. 이후 응용분야인 양자점을 소개하고 ‘탐구활동’을 통해 그 원리와 현상을 이해하도록 한다. 이것을 통해 과학과 핵심역량인 탐구능력을 키울 수 있도록 하였다. 물리학Ⅱ의 경우, 아직 교육과정이 적용되지 않았으므로 실제 학교에서 학생들을 대상으로 수업을 실시하지 못하였다. 하지만 앞으로 도입될 2015년 개정 교육과정에서 본 연구에서 개발된 부교재와 수업지도안이 학생과 교사에게 많은 도움이 될 것으로 예상된다.

      • Fingerprints of High Energy Physics Beyond Colliders

        Dunsky, David I ProQuest Dissertations & Theses University of Cali 2022 해외박사(DDOD)

        RANK : 2942

        Hints of new physics Beyond the Standard Model (BSM) range from dark matter and the strong CP problem to grand unification and the origin of the matter-antimatter asymmetry. Historically, colliders have been the principal engines of discovery, but with no new physics discovered at the Large Hadron Collider (LHC) except the expected Higgs, and decades until the next collider may be built, a few questions naturally arise: What if there is no new physics until very high scales? How can we discover high energy physics which may hide at energies far above the reach of next-generation colliders? This dissertation focuses on answering these questions in three parts.Part (I) discusses early-Universe cosmology and model building guided by hints from Standard Model parameters as measured by the LHC, particularly Higgs Parity phenomenology. Higgs Parity is a two Higgs doublet mirror extension of the Standard Model that provides an explanation for the peculiar vanishing of the Higgs quartic coupling at very high energies due to quantum corrections from Standard Model particles. Higgs Parity comes in many rich variations, but all share the key mechanism of making the Standard Model Higgs a pseudo- Goldstone boson at the Higgs quartic scale, thereby giving the Standard Model Higgs a vanishing mass and hence vanishing quartic coupling at this scale. The phenomenology of these variations of Higgs Parity are discussed in Chapters 1-3. We find that Higgs Parity admits a natural dark matter candidate in the mirror electron, which can be detected from its scattering with protons due to unavoidable kinetic mixing between the mirror photon and our photon (Ch. 1); generation of dark radiation from the decay of mirror glueballs that can be detected by CMB Stage IV (Ch. 2); and generation of our observed matter-antimatter asymmetry via leptogenesis associated with warm and hot sterile neutrino dark matter (Ch. 3). In all Higgs Parity models, future precision measurements of the top quark mass, strong coupling constant, and Higgs mass will hone in on the precise scale at which the Higgs quartic vanishes and hence predict the aforementioned signals. The reader will thus find signal plots in this part of the dissertation that indicate how the various Higgs Parity signals change as a function of these Standard Model parameters. Finally, Part (I) concludes with discussion on physics inspired by, or in similar spirit to, Higgs Parity: general cosmological constraints on sterile neutrino dark matter in left-right symmetric theories (Ch. 4) and Higgsino dark matter in Intermediate Scale Supersymmetry models (Ch. 5).Part (II) focuses on astrophysical probes of BSM physics at energies and couplings unreachable at current colliders. We first turn to Nature’s own accelerator, supernova shocks, to search for undiscovered CHarged Massive Particles (CHAMPs) that may make up a component of dark matter (Ch 6). Such undiscovered particles with minuscule electric charges are well motivated in particle physics (kinetic mixing between the photon and a dark photon), and in cosmology. For example, a particle with electric charge about one trillionth that of an electron can be thermally produced via freeze-in in the early Universe with a relic abundance matching that of the dark matter we see today. Typically, such small electrically charged particles are too weakly interacting or too massive to be discovered at colliders. However, the plasma of the interstellar medium provides a unique laboratory to search for such particles. We trace the dynamics of CHAMPs in the Milky Way and their acceleration by supernova shocks and find this Fermi-accelerated component of dark matter can provide unique experimental signatures typically absent from dark matter moving at virial speeds, such as from their Cherenkov light produced in water or ice. From this analysis, we disfavor CHAMP dark matter with mass less than 105 GeV and charge greater than 10-9 e.In the following chapter, we examine how Magnetic White Dwarfs (MWDs) can generate leading constraints on the coupling of low mass axions to photons (Ch. 7). Axions — well- motivated particles that arise in many theories beyond the Standard Model, such as from the breaking of a global U (1) or from string compactifications — are extremely weakly coupled to Standard Model particles and are thus difficult to probe. However MWDs possess enormous static (B ≳ 100 MG) and large scale (coherence ≳ 1R⊕) magnetic fields that can provide another unique laboratory to test the axion-modified Maxwell equations. In particular, we calculate the axion-induced polarization of MWD starlight arising from the conversion of photons leaving the MWD atmosphere and converting to axions in the MWD magnetosphere. Taking into account astrophysical polarizations and uncertainties, we exclude, at 2σ, axion- photon couplings greater than 5.4 x 10−12 GeV−1 for axion masses below 3 x 10−7 eV.Part (III), which concludes this dissertation, considers other novel signals of high energy physics from the sky, namely gravitational waves. Gravitational waves provide a particularly promising way of studying ultra-high energy physics since gravitational waves produced in the early Universe can travel unimpeded through the primordial plasma and be detected today, carrying information about the BSM physics that sourced them. Moreover, it is often the case that the higher the scale of the BSM physics, the stronger the gravitational wave signal. In contrast, with state-of-the-art technology, a collider far larger than the size of the solar system is needed to reach energies approaching grand unification scales.We first study the gravitational wave signals from a stochastic cosmic string background experiencing an exotic equation of state in the early Universe known as kination, which can arise from the rotation of an axion field (Ch. 8). We find that the change in the expansion rate of the Universe due to the rotation of the axion field imprints a unique triangular peaked gravitational wave spectrum that encodes enformation about the duration and energy scale of the kination era. We determine the parameter space where current and future gravitational wave detectors can distinguish the kination cosmology from the standard ΛCDM cosmology.In the final chapter (Ch. 9), we investigate more generally the gravitational wave signals from hybrid topological defects such as cosmic strings bounded by magnetic monopoles or domain walls bounded by cosmic strings. We show that many grand unification paths generate hybrid topological defects in the early Universe that decay via gravitational waves from the ‘eating’ of one defect by the other via the conversion of its rest mass into the other defect’s kinetic energy. We calculate these gravitational wave ‘gastronomy’ signals and show how observation of these relic gravitational wave signatures can be used to distinguish many unification paths, providing extraordinary insight into ultra-high energy physics.

      • Interactive Physics를 이용한 고등학교 물리교육 : 역학단원 중심으로

        이현주 啓明大學校 2005 국내석사

        RANK : 2942

        본 논문의 연구목적은 실험중심 과학교육의 실현 방법으로 Interactive Physics를 이용한 시뮬레이션 개발 프로그램을 제작하는데 있다. 이러한 목적에 따라 본 논문에서는 과학교육과 컴퓨터의 이론적 관계를 검토하였고 시뮬레이션을 이용한 수업의 장점과 그 수업이 효과적이기 위한 요인이 무엇인지를 탐구하였고 실험수업을 위한 컴퓨터 시뮬레이션을 이용한 수업모형을 살펴보았다. 본 논문에서는 고등학교 과학교과내용 중 에너지 보존 영역에 해당하는 진자의 운동, 롤러코스터의 운동 그리고 스프링에 매달린 공의 운동을 Interactive Physics를 이용하여 제작하였다. Interactive Physics를 이용해서 만들어진 시뮬레이션은 학습자가 스스로 외부환경을 변화시켜가며 실험을 경험할 수 있으며 그 결과 추상적인 개념들을 시뮬레이션을 통해 구체화 할 수 있다. 차후의 연구 과제는 좀 더 현실감 있고 입체적인 시뮬레이션이 요구되어지며 다른 과학 분야에서도 더 많은 시뮬레이션을 Interactive Physics로 구현하는 것이다. 또한 교수분석, 설계, 평가를 위한 인터페이스를 지원하여 학습자의 학습결과 진단과 피드백을 위한 기능에 대한 연구가 이루어져야 한다. The aim of this study is to produce an educational simulation program using Interactive Physics, which makes more experiment-based educational environments for science classes. For this purpose, we examine theoretical relations between science education and computer: we study merits of simulation and effectiveness for the science class. We also take a class closer look at the class model using computer simulations for experiment classes. In this thesis, we developed using Interactive Physics motion of pendulum, programs for the a roller coaster and a ball hung over spring, from which students learn the principle of the conservation of energy in high school science. In these program students themselves can vary several conditions and experience a real situations, and this they can make abstract concept more concrete through the simulations. In the next task of this which more realistic dimensional simulation and the development of simulations using Interactive Physics in other areas of sciences. Furthermore, an interface for teaching analysis, planning, and evaluation is needed. More research should be conducted about the functions of a simulation program which can evaluate student improvements in learning ability and feedbacks.

      • A Novel Search for Exotic Decays of the Higgs Boson with the ATLAS Detector and Enhancing the Physics Potential of the Large Hadron Collider and Atom Interferometers with New Techniques

        Safdari, Murtaza ProQuest Dissertations & Theses Stanford Universit 2022 해외박사(DDOD)

        RANK : 2942

        Fundamental physics research aims to understand the theory of particle interactions, the Standard Model (SM) of particle physics being the current best theory of the electroweak and strong forces. Modern efforts seeks to explain phenomenon like the matter antimatter asymmetry of the universe and the nature of dark matter using various experimental modalities such as terrestrial particle colliders like the Large Hadron Collider (LHC). The ATLAS detector on the LHC is conducting a diverse physics program of precision SM measurements and searches for Physics beyond the SM using deeply inelastic scattering products to study fundamental physics.The original research presented here uses proton collision data from the ATLAS detector to search for an exotic decay mode of the Higgs boson coupling to a new light scalar field. Additionally, two research projects are presented to improve the performance of the ATLAS detector. The first introduces a novel algorithm to improve the efficiency of locating interesting physics within saved events. The second improves the jet calibration procedure by enabling the use of gradient based regression with a novel objective function along with a unified neural network based framework.Additionally, a network of quantum sensors are in development to enhance the physics reach of modern detectors and expand the set of models of new physics that can be experimentally probed. One such technology is atomic gradiometer interferometric sensors, like the MAGIS-100 experiment, that utilize matter waves to search for ultralight bosonic dark matter. The research and development of a novel light field imaging device is presented here for the MAGIS-100 experiment, as part of a burgeoning collaboration between the high energy physics (HEP) and the atomic, molecular, and optical (AMO) physics communities.

      • Cognitive development in introductory physics: A research-based approach to curriculum reform

        Teodorescu, Raluca Elena The George Washington University 2009 해외공개박사

        RANK : 2941

        This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.

      • Computational Design Method of Multi-physics Systems via Accelerated Phase Field Simulation and Physics-informed Neural Networks

        곽태진 서강대학교 일반대학원 2024 국내박사

        RANK : 2941

        재료의 물성을 향상시키기 위한 연구는 현재까지 다양한 분야에서 진행되어 왔다. 특히 기계적, 광학적, 화학적 물성 등의 분야에서 많은 연구가 진행되어 왔다. 기계적 분야에서는 가볍고 강한 재료, 광학적 분야에서는 높은 전자기장 증폭 구조 및 형상 또는 광학 차폐 기술, 화학적 분야에서는 높은 생산수율을 갖도록 하는 반응기 설계, 장기간 사용할 수 있는 배터리 등 다양한 연구가 진행되어 왔다. 최근에는 위와 같은 시스템의 물성 및 성능을 향상시기키 위해 단일 물리, 단일 재료, 혹은 단일 상(Phase)을 사용하지 않고 다양한 상을 사용하는 multi-phase system, 혹은 다중 물리 환경을 사용하는 multi-physics system 의 활용이 급격하게 증가하고 있다. 그 예로 3d printing, multi-phase fluid chamber 등, multi- phase system 등을 활용하는 연구가 진행되고 있으며, 전기화학반응을 활용하는 차세대 배터리인 Li metal battery, 빛을 이용하여 열 및 유동을 발생시키는 photothermal effect 등 다중 물리 현상에 대한 연구가 활발하게 진행되고 있다. 이러한 multi-phase, multi-physics 기반 전산 설계, 즉 computational design을 위한 방법으로는 크게 나누어 시뮬레이션과 AI가 있다. 시뮬레이션은 현상을 정확하게 모사하는 미분방정식을 구축하고 수치해석적 방법을 적용하여, 물리적 현상을 유사하게 모사하여 시스템을 설계한다. AI는 현상의 물리적 원리를 고려하지 않고, 방대한 데이터만을 사용하여 데이터 간의 상호관계를 도출 후 이를 활용하여 설계를 진행한다. 하지만 시뮬레이션의 경우 모델링, 최적화, 평가의 과정을 설계기준치를 만족할 때까지 계속 진행하여야 하며 이때 발생하는 방대한 계산시간으로 인해 시간적, 계산자원적 손실이 발생한다. 또한 인공지능의 경우 모델의 높은 정확도 달성을 위해 방대한 데이터가 필요하며, 이때 데이터 구축을 위해 많은 시간과 비용이 필요하다. 추가로 인공지능은 mean square error(MSE), mean absolute error(MAE) 등 예측 데이터와 실제 데이터 사이의 차이를 최소화하도록 학습을 진행하기에, 물리적으로는 굉장히 중요하지만 수치적 영향력이 낮은 미세한 영역은 무시하는 경향이 있다. 그 예로 fluid droplet 현상 모사 AI 개발 시, 실험과는 다르게 미세한 satellite droplet을 무시하는 경향이 있다. 즉 크기나 부피가 작아 MSE, MAE 에 큰 영향을 미치지는 않지만 물리적으로 중요한 현상을 무시한다. 따라서 이러한 simulation 과 AI의 한계를 극복하기 위해, 첫 번째로 GPU CUDA를 multi- physics phase field simulation 에 최적화하여 가속화 모델을 개발하였다. Phase field model 의 미분 계산에 사용되는 Fourier spectral method 를 수치해석적 정확도 비교를 통해 가속화하였으며 또한, multi-physics 시뮬레이션에 최적화된 GPU ALU 의 분배 방법을 개발하였다. 두 번째로 인공지능의 한계점을 개선하기 위해 multi-physics system 에 최적화된 PINNs 를 개발하였다. 기존의 인공지능 layer 및 node 의 학습 방향을 결정하는 loss function 에 multi-physics constraint을 추가하여 AI가 물리 법칙을 만족하며 학습할 수 있도록 multi-physics PINNs 학습방법을 개발하였다. 이를 통해 multi-physics system 설계를 위한 인공지능 모델 활용 시 물리법칙에 위배되지 않고 예측할 수 있도록 하였으며, 기존 인공지능 모델 대비 적은 데이터를 활용하여 더 높은 예측 정확도를 가질 수 있도록 하였다. 개발 방법을 Li metal 배터리 열화 예측에 활용하여, 가속화 모델을 통해 multi-physics system의 데이터 베이스를 구축하고, PINNs를 활용하여 기존의 simulation 및 AI를 통한 데이터베이스 구축 및 학습으로 더욱 빠르고 정확한 설계 시스템 구축 및 개발 가능성을 확인하였다. 추후 이러한 개발 방법 활용 시, 실험 데이터, 공정 데이터, 기존의 인공지능 모델의 정확도를 향상시킬 수 있을 것으로 예상하고 있으며, 추후 생성형 인공지능 등 다양한 인공지능에 본 방법을 활용 시 더 높은 정확도의 생성형 인공지능을 개발할 수 있을 것으로 예상된다. The exploration and enhancement of material properties have been a focal point across diverse fields, including mechanical, optical, and chemical domains. Recent research shifts towards utilizing multi-phase and multi-physics systems to surpass the limitations of single physics, single material, or single-phase approaches. This paradigm shift can be seen in various areas such as 3D printing systems, multi-phase fluid chambers, and innovative batteries like Li metal batteries, capitalizing on multiple physical phenomena. For designing the multi-physics system, the simulation and artificial intelligence (AI) methods have widely used. Simulation builds differential equations that accurately simulate phenomena and is calculated by applying numerical analysis methods, while AI simply uses big data without physical correlation to derive interrelationships between data. However, simulation must continue through the modeling, optimization, and evaluation until the design standards are met. Due to the enormous calculation time that occurs at this time, high computational resource is necessary. Additionally, AI requires massive amounts of data for high accuracy. It takes a lot of time to build a large amount of data and incurs a lot of cost. In addition, AI proceeds with learning in a way that simply minimizes only the commonly used mean square error (MSE) and mean absolute error (MAE). Therefore, AI learning method of MSE and MAE tends to ignore fine details which are physically very important. In other words, the fine details cannot have a significant impact on the learning algorithm of MSE and MAE. Here, to overcome these limitations of simulation and AI, the GPU parallel computation acceleration model was applied to multi-physics phase field simulation to accelerate it. The Fourier spectral method used in the phase field model was accelerated based on characteristics of numerical methods and the CUDA parallel computing, and an optimal distribution method of ALU and VRAM was developed for multi-physics simulation. Additionally, to improve the limitations of AI, we developed a physics informed neural networks (PINNs) method for multi-physics systems. We developed a multi-physics PINNs model to enable AI to learn to satisfy physical laws by adding a multi-physics constraint to the loss function that determine direction of AI learning. Through this, it was possible to satisfy the physical conditions which is necessary for design in a multi-physics environment and achieve higher accuracy by utilizing relatively small data than conventional AI model based on multi-physics constraints. We established a database of a multi-physics system using the accelerated phase field simulation presented in this paper, and confirmed that faster and more accurate design is possible when designing a multi-physics system through the PINNs. Through this, we expect to be able to improve the accuracy of AI model for experimental data, process data, and in the future, this method will be able to be actively applied to various generative artificial intelligence.

      • Examining issues of underrepresented minority students in introductory physics

        Watkins, Jessica Ellen Harvard University 2010 해외박사(DDOD)

        RANK : 2941

        In this dissertation we examine several issues related to the retention of under-represented minority students in physics and science. In the first section, we show that in calculus-based introductory physics courses, the gender gap on the FCI is diminished through the use of interactive techniques, but in lower-level introductory courses, the gap persists, similar to reports published at other institutions. We find that under-represented racial minorities perform similar to their peers with comparable academic preparation on conceptual surveys, but their average exam grades and course grades are lower. We also examine student persistence in science majors; finding a significant relationship between pedagogy in an introductory physics course and persistence in science. In the second section, we look at student end-of-semester evaluations and find that female students rate interactive teaching methods a full point lower than their male peers. Looking more deeply at student interview data, we find that female students report more social issues related to the discussions in class and both male and female students cite feeling pressure to obtain the correct answer to clicker questions. Finally, we take a look an often-cited claim for gender differences in STEM participation: cognitive differences explain achievement differences in physics. We examine specifically the role of mental rotations in physics achievement and problem-solving, viewing mental rotations as a tool that students can use on physics problems. We first look at student survey results for lower-level introductory students, finding a low, but significant correlation between performance on a mental rotations test and performance in introductory physics courses. In contrast, we did not find a significant relationship for students in the upper-level introductory course. We also examine student problem-solving interviews to investigate the role of mental rotations on introductory problems.

      • 고등학생의 물리 과목선택과 물리과목에 대한 태도 분석

        이주연 전남대학교 교육대학원 2003 국내석사

        RANK : 2941

        최근의 이공계, 특히 물리과목의 기피현상이 중요한 사회적 문제로 제기되고 있다. 따라서, 본 연구는 학생의 관점에서 학생들의 물리 선택율을 조사하고, 선택한 경우에 대한 이유와 선택하지 않은 경우에 대한 이유를 조사하였다. 그리고 과학적 태도 검사지 중에 하나인 TOSRA와 물리 선택율에 영향을 미칠 수 있는 가능한 요인에 대한 문헌조사에 기초하여 TOSRA를 수정하였고 이를 이용하여 학생들의 물리에 대한 태도를 조사하였다. 그리고 마지막으로 고등학교 2학년 문과 학생을 대상으로 물리 수업 시간에 배우기를 희망하는 내용을 조사하여, 물리교육과정과 수업 설계를 위한 시사점을 추출하였다. 이를 위해 전국의 7개 지역 (서울, 부산, 광주, 인천, 경기, 전남, 청주)을 대상으로 고등학교 1학년 728명을 대상으로 설문지를 이용하여 조사하였다. 조사 결과, 과학과목을 한 과목이상을 선택한 학생은 78.5% 이었다. 그리고 자발적인 물리 선택율이 13%로 나타났으며, 과학과목 중 한 과목도 선택하지 않은 학생(21.5%)을 대상으로, 반드시 과학과목 중에서 하나를 선택하도록 한 경우에는 물리를 선택한 학생은 6.8%로서 전체 학생수에 대해서는 1.3% 이었다. 따라서, 자발적인 물리 선택율은 13%, 과학과목 중 하나를 선택하도록 강요한 경우에 물리 선택율은 14.3%이었다. 자발적으로 물리를 선택한 학생들의 남녀별 분포를 보면, 남녀 비율은 약 3:1로 나타나 남녀간 물리 선택율에서 차이가 크게 나타났다. 자발적으로 물리를 선택한 학생들의 지역별 분포를 보면, 대도시 학생들 중에서 12.6%, 중소도시 학생들 중에서 13.9%로 나타나, 물리 선택율이 지역별로 큰 차이를 보이지 않았다. 물리를 선택한 경우에 그 이유를 보면, 물리가 흥미롭고(26.3%), 장래 희망과 관련이 있고, 가려는 대학에 필요하기 때문(25.7%), 쉽다(11.4%), 실생활에 많이 필요하기 때문(11.4%)이라는 이유가 많았다. 물리를 선택하지 않은 경우에 그 이유를 보면, 물리가 어렵고 이해가 안 되기 때문(52.9%), 계산이 싫고, 공식이나 수식이 복잡하기 때문(24.3%)이라는 이유가 많았다. 물리를 선택한 하지 않은 이유를 선택한 경우와 비교해 보면, 물리를 선택한 이유에서 물리가 쉽기 때문(11.4%), 계산을 하는 것이 과학답기 때문(3.6%), 이해가 잘 되기 때문(6%)에 불과한 것으로 나타나, 학생들의 물리 선택율을 높이기 위해서는 선택하지 않은 이유를 고려하는 문제뿐 아니라, 물리를 선택하게 되는 또 다른 이유 (즉, 흥미롭고 장래희망과 실생활에 필요하도록)도 고려할 필요가 있음을 의미한다. 물리에 대한 태도는 총 9개 항목에 대해서 조사 했으며, 응답은 긍정적인 경우에 +2, 부정적인 경우는 -2, 그리고 중립적인 태도는 0점으로 분석하였다. 조사 결과, 물리를 선택한 학생과 선택하지 않은 학생들간에 비교하면, (1) 물리의 사회적 관련성에 대해서는, 0.912:0.486 (2) 물리학자의 정상성에 대해서는 0.215 : 0.050 (3) 물리적 탐구 태도에 대해서 보면 0.664 : 0459 (4) 물리적 태도의 수용에 대해서 보면 0.562 : 0.117 (5) 물리 수업의 즐거움에 대해서 보면 0.423 : -0.622 (6) 물리를 여가로 즐기는 것에 대해서 보면 -0.089 : -0.858 (7) 물리의 직업적 흥미 대해서 보면 0.066 : -0.691 (8) 수학으로 인한 물리의 어려움에 대해서 보면 0.162 : -0.380 (9) 물리의 어려움에 대해서 보면 0.095 : -0.564로 나타난다. 따라서 물리를 선택한 학생은 물리를 선택하지 않은 학생에 비해 물리 수업의 즐거움(t= 22.828, p<0.05)과 물리의 직업적 흥미(t=14.897, p<0.05)에서 상대적으로 점수가 높게 나왔다. 그리고 각 문항의 점수를 비교했을 때 물리학자의 정상성에 대해서는 대부분 긍정적인 반응이 나왔지만 특히, 물리학자는 그의 가족과 충분하나 시간을 함께 보낸다라는 항목에서는 선택한 학생이나 선택하지 않은 학생 모두 부정적인 반응이 나왔다. 물리를 여가로 즐기는 태도에서 학생들의 대부분의 실험에서 또는 특별활동으로 물리를 즐기는 것에는 부정적인 반응을 보였지만, TV에서 보여지는 물리를 시청하는 것에 대해서는 긍정적인 반응이 나왔다. 이것이 의미하는 것은 물리를 선택한 학생은 물리를 선택하지 않은 학생에 비해 수업에 대해 흥미를 느끼고 장래에 물리에 관련된 직업에도 관심이 있음을 알 수 있다. 그리고 물리학자는 연구하느라 항상 바쁘기 때문에 가족과 함께 보내지 못한다라는 생각을 하며 학생들이 학교생활을 하면서 물리에 대한 흥미를 가지는 것보다는 TV에서 보여주는 물리에 더 흥미를 가진다라고 할 수 있다. Recently the tendency of avoiding science, physics in particular, as a major has become an important social issue. Therefore, this study examined the tendency of students to choose physics from the students' standpoint, and investigated students' attitude towards physics using TOSRA and revised TOSRA on the basis of philological study on the possible factors which can influence the ratio of the choice of physics. Lastly, the study was carried out with the second grade students of high school of liberal arts on the contents of their physics classes to draw possible suggestions on how to design physics course. Survey showed 78.5% of the total students chose at least one subject in science. Voluntary choice of physics comprises 13%. In case the students who have not chosen any of the science subjects (21.5%) are forced to choose at least one subject in science, 6.8% chose physics which comprises 1.3% of the total students. In summary, the students who voluntarily chose phycis was 13%, and when they were forced to choose at least one subject in science, the students who chose physics were 14.3%. When the students were given free rights to choose, male and female proportion was 3 to 1, which showed that there is considerable difference in the choice of physics according to one's sex. If you look at the geographical distribution of the students who voluntarily chose physics, 12.6% were from the large cities, and 13.9% were from small and medium size cities. Thus, geographical difference seems to have little influence in the choice of physics. The reasons why the students chose physics were; interesting (26.3%), relevant to what they plan to do when they grow up and necessary to enter the university they want to go (25.7%), relevant to everyday life (11.4%). The reasons for not choosing physics were: difficult and hard to understand (52.9%), calculation is troublesome and formula are complicated (24.3%). Other reasons for choosing physics were; easy (11.4%), to calculate is a sciencelike thing to do(3.6%), easy to understand(6%). Therefore to increase the percentage of the students who choose the physics, above-mentioned reasons for choosing physics (i.e. interesting, necessary for everyday life and future) as well as reasons for not choosing the physics have to be taken into consideration. In the study of the attitude towards physics, comparison between the students who chose physics and those who didn't shows the following distribution: (1) Social implications of physics - 0.912:0.486 (2) Normality of scientist - .215:0.050 (3) Attitude to scientific inquiry - 0.664:0.459 (4) Adoption of scientific attitudes - 0.562:0.117 (5) Enjoyment of science lessons - 0.423:-0.662 (6) Leisure interest in science - 0.089:-0.858 (7) Career interest in science - 0.066:-0.691 (8) difficulty of physics due to mathematics - 0.162:-0.380 (9) Difficulty of physics - 0.095:0.564 Consequently, those who chose physics had relatively higher score than those who didn't in the categories such as enjoyment of the physics lesson (t=22.828, p<0.05) and career interest in physics (t=14.897, p<0.05). What this means is those who chose physics have relatively more interest in the physics class and physics-related careers in the future. When we compared both groups with respect to the category of 'leisure interest in physics' which both groups showed negative responses to, the student group who did not choose physics showed less interest in physics as a leisure. However, we could also see that none of the both groups would want to get involved in physics-related societies in the shool, nor would they want to have physics as a conversation topic with friends, nor would they want to do physics-related activities after school.

      • Between the poles: Locating physics majors in the expert-novice continuum

        Gire, Elizabeth Ellen University of California, San Diego 2007 해외박사(DDOD)

        RANK : 2941

        Expert-novice comparisons have been a productive research tool for investigating many aspect of physics education, including physics conceptions, views about physics, and problem solving activities. These comparisons have typically focused on differences between introductory physics students and physics professor. This thesis examines undergraduate physics majors, who have an intermediate amount of experience studying physics. Known expert-novice distinctions are used to characterize physics majors' views about science and problem solving activities. Views about science are measured with the Colorado Learning Attitudes about Science Survey. Follow-up interviews allowed students to elaborate on their responses to the survey and informed the interpretation of the survey data. During the interviews, students were asked to solve two physics problems. The students' approaches to these problems and their problem solving heuristics are characterized using a scheme developed from known expert-novice differences. It was found that undergraduate physics majors' have many views and problem solving abilities that are similar to those of experts. The implications for teaching physics and physics education research are discussed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼