RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 一定方向의 軸力과 移動彈性系에 의한 動荷重을 받는 單純보의 動特性

        김봉균 동의공업대학 2001 論文集 Vol.27 No.1

        An analysis is Presented on the influence of the axial forces and a moving elastic system at constant velocities on dynamic behavior of a simple beam. The compressive and tensile fores are conservative, which remain in constant directions. A moving elastic system consists of spring, viscous dampers, a sprung mass, and an unsprung mass. The sprung mass is an elastic body supported at both ends by the suspension unite consisting of springs and viscous dampers, and assumed to be vibrated transversely. The unsprung masses are the rigid bodies attached to the bottom of the suspension unit and moves, not separating from a simple beam, at constant velocity on it. Gravitation and inertia fores of the sprung and unsprung masses, the vertical displacement and transverse vibration of the sprung mass, and the spring and damping fores make a moving elastic system vibrate by their coupling, and also this vibration and the velocity of a moving elastic system make a simple beam vibrate transversely. As the position of a moving elastic system moves to the right on a simple beam, the deflection of it is increased. The deflection of a simple beam is not nearly influenced by the velocities of a moving elastic system in first mode, but is more influenced in total mode. The deflection of a simple beam is very large at the high velocity of a moving elastic system in total mode. Since the spring force control the transverse vibration of a simple beam, the large force of springs decrease the deflection unit and an axial force influence infinitesimally on the deflection of a simple beam.

      • KCI등재

        일반 구조용 강재 적용 정정 및 부정정 보부재의 고온 시 해석적 내력 평가 연구

        권인규 한국화재소방학회 2015 한국화재소방학회논문지 Vol.29 No.4

        Loads applied on the floor are transferred through beams to columns. The beams can be designed as both end fixed orsimple beams. The load bearing capacity of a beam depends on each boundary condition. However, when the load bearingcapacity of a beam is evaluated in fire tests, all kinds of beams are tested using simple beam conditions. In this study,an analytical method performed using heat transfer theory and heat stress analysis based on the mechanical and thermalproperties of SS-400 steel at high temperature. This method was used to clarify the differences between the two types ofboundary conditions at normal and high temperature. The results show that the load bearing capacity of a both-end fixedbeam at high temperature is superior to that of a simple beam. Therefore, the application of simple beam conditions in firetests for evaluation of load bearing capacity is conservatively safe compared to fixed boundary conditions. 강구조 건축물의 바닥하중은 보부재를 통하여 기둥부재로 전달되며, 보부재는 양단 고정단 또는 단순보 조건으로 구성된다. 양단 고정단 강재보와 한단 힌지 그리고 타단 회전단의 단순보는 경계조건의 차이에 따라 전달되는 최대하중과 처짐 등 구조적 내력성능이 상이하나, 화재 시 내화성능 평가는 단순보의 경계조건으로 평가되고 있다. 따라서 본 논문에서는 강재보의 경계조건에 따른 내력적 성능의 차이를 확인하기 위하여 일반 구조용 강재(SS 400)의 고온특성을 적용한열전달해석 및 열응력해석을 수행하였으며, 그 결과 동일한 보부재의 길이와 단면 조건하에서 부정정 구조물인 고정단경계조건이 정정 단순보 경계조건에 비해서 내력과 처짐이 건전한 것으로 나타났다. 따라서 강재 보의 내화시험 시 단순보로 시험하는 것이 안전측으로 판단되었다.

      • SCIESCOPUSKCI등재

        A study on the development of equivalent beam analysis model on pedestrian protection bumper impact

        Park, Dong-Kyou,Jang, Chang-Doo 대한기계학회 2011 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.25 No.9

        This paper presents a dynamically equivalent beam analysis model on pedestrian protection bumper impact instead of a non-linear finite element impact analysis method. Equivalent beam analysis model was developed by substituting the femur and tibia for dynamically equivalent Euler beam. Dynamically equivalent forces of bumper beam, upper stiffener and lower stiffener are found by a finite element analysis results and applied to the Euler beam model of lower legform impactor. This equivalent beam analysis model was used to obtain a bending angle of lower legform impactor by using finite element beam theory. Peak acceleration of the tibia was obtained by developing an approximate acceleration equation. A linear interpolation of non-linear finite element analysis results considering the dimension variation of bumper beam factors affecting the acceleration was used to get an approximate acceleration equation. The accuracy of this simple analysis model was tested by comparing its results with those of the non-linear finite element analysis. Tested bumper beam types were press type beam and roll forming beam used widely in the current car bumpers. The differences of maximum acceleration of the tibia between the two models did not exceed 10% and the bending angle did not exceed 20%. This accuracy is enough to be used in the early stage of bumper beam design to check the bumper pedestrian performance quickly. Use of equivalent beam analysis model is expected to reduce the analysis time with respect to the non-linear finite element analysis significantly.

      • KCI등재

        일정체적 단순지지 최강보

        이병구(Lee Byoung Koo),이태은(Lee Tae Eun),김영일(Kim Young Il) 대한토목학회 2009 대한토목학회논문집 A Vol.29 No.2A

        이 논문은 정다각형 중실단면을 갖는 최강보에 관한 연구이다. 이 연구에서 보의 체적은 항상 일정하다. 이러한 보에 집중하중과 만재 사다리꼴 분포하중이 작용하는 경우에 탄성곡선의 미분방정식을 유도하고 이를 수치해석하여 정적 거동을 산정하였다. 미분방정식은 Runge-Kutta법을 이용하여 수치적분을 하였고 미지수인 보의 초기치는 shooting method를 이용하여 산정하였다. 수치해석 예에서는 단순보를 채택하였고, 단면깊이의 형상함수로는 선형, 포물선형 및 정현형의 함수를 채택하였다. 이 연구에서 얻은 수치해석의 결과로부터 보의 정적 최대거동값이 최소가 되는 단면형상 즉 최강단면비를 산정하였다. This paper deals with the strongest beams with the solid regular polygon cross-section, whose volumes are always held constant. The differential equation of the elastic deflection curve of such beam subjected to the concentrated and trapezoidal distributed loads are derived and solved numerically. The Runge-Kutta method and shooting method are used to integrate the differential equation and to determine the unknown initial boundary condition of the given beam. In the numerical examples, the simple beams are considered as the end constraint and also, the linear, parabolic and sinusoidal tapers are considered as the shape function of cross sectional depth. As the numerical results, the configurations, i.e. section ratios, of the strongest beams are determined by reading the section ratios from the numerical data related with the static behaviors, under which static maximum behaviors become to be minimum.

      • KCI등재

        CTMD의 질량비에 따른 단순보의 휨거동 제어효과

        허광희 ( Gwang-hee Heo ),서상구 ( Sang-gu Seo ),김충길 ( Chung-gil Kim ),전승곤 ( Seung-gon Jeon ),김민기 ( Min-ki Kim ) 한국구조물진단유지관리공학회 2021 한국구조물진단유지관리공학회 논문집 Vol.25 No.6

        본 연구는 강제진동으로 인해 교량에 발생되는 휨 변위를 효과적으로 완화하는 것이 목적이다. 단순보의 휨거동 제어를 위하여 스프링과 mass의 관계를 결합한 CTMD(Combine Tuned Mass Damper)를 개발하였다. 개발한 CTMD는 교량의 특성에 따라 질량비의 조절이 가능하도록 CTMD 내부의 Mass를 가감할 수 있는 Mass slot과 Mass block을 설계 제작하였다. CTMD에 적용된 Spring의 최대하중은 33.15N으로 고정하였다. 개발된 CTMD의 성능을 평가하기 위하여 길이 10m, 폭 0.6m, 높이 0.74m인 단순보를 제작하였다. 단순보의 지점조건은 한단 힌지, 한단 롤러로 구성하였다. 실험 방법은 단순보의 중앙에 CTMD를 설치하고 Mass를 조절하여 질량비에 변화를 주어 실험하였다. 이때 질량비에 따른 휨 거동 제어효과는 단순보의 중앙에 설치한 LVDT를 이용하여 측정하였다. 가진 조건은 단순보의 최대 휨 거동을 유발시키기 위하여 단순보의 힌지단에서 1.25m 떨어진 곳에 관성형가진기를 설치하여 3Hz로 흔들었다. 실험 결과 최적의 질량비가 2.1일 때 휨 거동 변위의 감쇠율이 약 71.2%로 최상의 제어효과를 나타내는 것으로 확인되었다. The purpose of this study is to effectively mitigate the bending displacement that occurs in the bridge due to forced vibration. We developed CTMD (Combine Tuned Mass Damper) that combines the relationship between spring and mass to control the bending behavior of simple beams. The experiment was conducted to confirm the control effect according to the change in the mass ratio of the developed CTMD. The developed CTMD is designed and manufactured so that the mass ratio can be adjusted according to the characteristics of the bridge. The maximum load of the spring applied to CTMD was fixed at 33.15 N. In order to evaluate the performance of the developed CTMD, a simple beam composed of hinges and rollers as boundary conditions was fabricated. In the experimental method, a CTMD was installed in the center of a simple beam and the deflection displacement according to the mass ratio was measured. The shaking condition was shaken at 3 Hz to induce the maximum bending behavior of the simple beam. As a result of the experiment, it was confirmed that when the optimal mass ratio was 2.1, the damping rate of the bending behavior displacement was about 71.2 %, indicating the best control effect.

      • KCI등재

        Seismic Performance Evaluation of SSMF with Simple Beam–Column Connections Under the Base Level

        Amirhosein Shabani,Saeed Erfani 한국강구조학회 2020 International Journal of Steel Structures Vol.20 No.1

        Simple beam–column connections are simpler and cheaper in construction than rigid beam–column connections, moreover, beams under the base level are only carrying gravity loads because of high rigidity of basement walls; therefore, seismic performance of special steel moment frame with basement wall is investigated in two cases in this paper. First, as the normal case of design, rigid beam–column connections are used under the base level, then all of the beam–column connections under the base level are changed to simple connections. The seismic performance of these two types is evaluated by FEMA P695 method. For predicting the collapse capacity of each archetype, adjusted collapse margin ratios are evaluated based on several nonlinear analyses and compared to acceptance criteria. Finally, seismic performance of these two kinds of structures is compared with each other. Despite the structural system’s change in height, seismic performance factors of special steel moment frames are considered for designing whole of the structures. Finally all two types of structures pass the acceptability checks and all the initial assumption are proved.

      • KCI등재

        A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams

        Mohamed Zidi,Mohammed Sid Ahmed Houari,Abdelouahed Tounsi,Aicha Bessaim,S. R. Mahmoud 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.64 No.2

        In this article, a novel simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) beams is proposed. The beauty of this theory relies on its 2-unknowns displacement field as the Euler- Bernoulli beam theory, which is even less than the Timoshenko beam theory. A shear correction factor is, therefore, not needed. Equations of motion are obtained via Hamilton‟s principle. Analytical solutions for the bending and free vibration analysis are given for simply supported beams. Efficacy of the proposed model is shown through illustrative examples for bending and dynamic of FG beams. The numerical results obtained are compared with those of other higher-order shear deformation beam theory results. The results obtained are found to be accurate.

      • KCI등재

        강재 단순보 단부에 근접한 개구부의 구조성능에 관한 실험적 연구

        한동호 ( Dong-ho Han ),윤성기 ( Sung-kee Yoon ) 한국구조물진단유지관리공학회 2020 한국구조물진단유지관리공학회 논문집 Vol.24 No.6

        본 연구는 강재 단순보의 유공보 시스템에서 개구부를 지지점 에 근접한 위치에 설치하는 경우에 대하여 구조성능을 파악하고자 실험을 실시하였다. 또한 수직·수평 강판을 이용한 개구부 보강에 대하여도 실험을 통하여 구조성능을 파악하였다. 강재 단순보에서 개구부가 지지점에 근접한 위치인 강재보 높이의 절반(D/2)인 경우에 강재보 높이(D)인 경우보다 적절한 개구부 위치인 것을 알 수 있었다. 또한 보강방법으로는 수직강판 보강보다는 수평강판 보강이 보강효과가 크며, 개구부와 강판의 간격이 없는 것이 구조성능이 더 큰 결과를 얻을 수 있었다. This study was conducted to identify the structural performance of the opening in a location close to the support point in the perforated beam system of steel beams. In addition, structural performance was determined through experiments on reinforced openings using vertical and horizontal steel plates. In the steel simple beam, it was found that the opening was in a position closer to the support point, half the height of the steel beam (D/2), which was more appropriate than the height of the steel beam (D). In addition, the reinforcement effect of horizontal steel plate was greater than that of vertical steel plate reinforcement. Structural performance was improved when there was no gap between openings and steel plates.

      • KCI등재

        A new simple shear and normal deformations theory for functionally graded beams

        Mohamed Bourada,Abdelouahed Tounsi,Abdelhakim Kaci,Mohammed Sid Ahmed Houari 국제구조공학회 2015 Steel and Composite Structures, An International J Vol.18 No.2

        In the present work, a simple and refined trigonometric higher-order beam theory is developed for bending and vibration of functionally graded beams. The beauty of this theory is that, in addition to modeling the displacement field with only 3 unknowns as in Timoshenko beam theory, the thickness stretching effect (εz= 0) is also included in the present theory. Thus, the present refined beam theory has fewer number of unknowns and equations of motion than the other shear and normal deformations theories, and it considers also the transverse shear deformation effects without requiring shear correction factors. The neutral surface position for such beams in which the material properties vary in the thickness direction is determined. Based on the present refined trigonometric higher-order beam theory and the neutral surface concept, the equations of motion are derived from Hamilton's principle. Numerical results of the present theory are compared with other theories to show the effect of the inclusion of transverse normal strain on the deflections and stresses.

      • KCI등재

        단부 보강에 따른 U-플랜지 트러스 보의 구조 내력에 관한 실험 연구

        오명호,김영호 한국공간구조학회 2020 한국공간구조학회지 Vol.20 No.2

        U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study, the details of delayed buckling of lattice members were developed through reinforcement of the end section, in order to improve structural capacity of U-flanged Truss Steel Beam. To verify the effects of these details, the simple beam experiment was conducted. The maximum capacity of all the specimens were determined by the buckling of the lattice. The vertical reinforced details of the ends with steel plates, rather than the details reinforced with steel bars, are confirmed to be a valid method for enhancing the structural capacity of the U-flanged Truss beam. In addition, U-flanged Truss Steel Beam with reinforced endings with steel plates can exhibit sufficient capacity of the lattice buckling by the formulae according to Korean Building Code (KBC, 2016) and Eurocode 3.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼