RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Cyanobacterial Taxonomy: Current Problems and Prospects for the Integration of Traditional and Molecular Approaches

        Komarek, Jiri The Korean Society of Phycology 2006 ALGAE Vol.21 No.4

        The application of modern ecological, ultrastructural and molecular methods, aided by the cultivation of numerous cyanobacterial morphotypes, has substantially changed our knowledge of these organisms. It has led to major advances in cyanobacterial taxonomy and criteria for their phylogenetic classification. Molecular data provide basic criteria for cyanobacterial taxonomy; however, a correct phylogenetic system cannot be constructed without combining genetic data with knowledge from the previous 150 years research of cyanobacterial diversity. Thus, studies of morphological variation in nature, and modern morphological, ultrastructural, ecophysiological and biochemical characters need to be combined in a “polyphasic” approach. Taxonomic concepts for generic and infrageneric ranks are re-evaluated in light of combined phenotypic and molecular criteria. Despite their usefulness in experimental studies, the limitations of using strains from culture collections for systematic and nomenclatural purposes is highlighted. The need for a continual revision of strain identification and proper nomenclatural practice associated with either the bacteriological or botanical codes is emphasized. Recent advances in taxonomy are highlighted in the context of prospects for understanding cyanobacterial diversity from natural habitats, and the evolutionary and adaptational processes that cyanobacteria undergo.

      • KCI등재

        Cyanobacterial Taxonomy: Current Problems and Prospects for the Integration of Traditional and Molecular Approaches [Review]

        Jirˇí Komárek 한국조류학회I 2006 ALGAE Vol.21 No.4

        The application of modern ecological, ultrastructural and molecular methods, aided by the cultivation of numerous cyanobacterial morphotypes, has substantially changed our knowledge of these organisms. It has led to major advances in cyanobacterial taxonomy and criteria for their phylogenetic classification. Molecular data provide basic criteria for cyanobacterial taxonomy; however, a correct phylogenetic system cannot be constructed without combining genetic data with knowledge from the previous 150 years research of cyanobacterial diversity. Thus, studies of morphological variation in nature, and modern morphological, ultrastructural, ecophysiological and biochemical characters need to be combined in a “polyphasic” approach. Taxonomic concepts for generic and infrageneric ranks are re-evaluated in light of combined phenotypic and molecular criteria. Despite their usefulness in experimental studies, the limitations of using strains from culture collections for systematic and omenclatural purposes is highlighted. The need for a continual revision of strain identification and proper nomenclatural practice associated with either the bacteriological or botanical codes is emphasized. Recent advances in taxonomy are highlighted in the context of prospects for understanding cyanobacterial diversity from natural habitats, and the evolutionary and adaptational processes that cyanobacteria undergo.

      • KCI등재

        Mucilaginibacter limnophilus sp. nov., isolated from a lake

        Shih-Yi Sheu,Yi-Ru Xie,Wen-Ming Chen 한국미생물학회 2019 The journal of microbiology Vol.57 No.11

        A polyphasic taxonomy approach was used to characterize strain YBJ-36T, isolated from a freshwater lake in Taiwan. Phylogenetic analyses, based on 16S rRNA gene sequences and coding sequences of an up-to-date bacterial core gene set (92 protein clusters), indicated that strain YBJ-36T formed a phylogenetic lineage in the genus Mucilaginibacter. 16S rRNA gene sequence similarity indicated that strain YBJ-36T is closely related to species within the genus Mucilaginibacter (93.8–97.8% sequence similarity) and is most similar to Mucilaginibacter fluminis TTM-2T (97.8%), followed by Mucilaginibacter roseus TTM-1T (97.2%). Microbiological analyses demonstrated that strain YBJ-36T is Gram-negative, aerobic, non-motile, rod-shaped, surrounded by a thick capsule, and forms pink-colored colonies. Strain YBJ-36T grew between 20–40°C (optimal range, 35–37°C), pH 5.5–7.0 (optimal pH of 6) and 0–2% NaCl (optimal concentration, 0.5%). The predominant fatty acids of strain YBJ-36T are iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), the major polar lipid is phosphatidylethanolamine, the major polyamine is homospermidine, and the major isoprenoid quinone is MK-7. The draft genome is approximately 4.63 Mb in size with a G+C content of 42.8 mol%. Strain YBJ-36T exhibited less than 35% DNA-DNA relatedness with Mucilaginibacter fluminis TTM-2T and Mucilaginibacter roseus TTM-1T. Based on phenotypic and genotypic properties and phylogenetic inference, strain YBJ-36T should be classified in a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter limnophilus sp. nov. is proposed. The type strain is YBJ-36T (= BCRC 81056T = KCTC 52811T = LMG 30058T).

      • KCI등재

        Paenibacillus psychroresistens sp. nov., isolated from the soil of an Arctic glacial retreat

        In-Tae Cha,Eui sang Cho,이유경,Seong Woon Roh,Myung-Ji Seo 한국미생물학회 2019 The journal of microbiology Vol.57 No.7

        Strain ML311-T8T was isolated from a glacial retreat area in Svalbard, Norway, and was taxonomically characterized by a polyphasic approach. Upon phylogenetic analysis, strain ML311-T8T was clustered with Paenibacillus arcticus MME2_ R6T and P. contaminans CKOBP-6T with 98.3–98.6 and 93.5– 93.9% 16S rRNA gene sequence similarities, respectively. DNA-DNA hybridization values between strain ML311-T8T and P. arcticus MME2_R6T was 19.9%. The genomic DNA G+C content was 41.1 mol%. The isolated strain was Gramstain- positive, strictly aerobic and rod-shaped, and grew in 0–0.5% (w/v) NaCl, at 4–23°C and pH 6.0–10.0, with optimal growth in 0% (w/v) NaCl, at 20°C and pH 7.0–8.0. The predominant respiratory quinone of strain ML311-T8T was MK- 7 and the major fatty acids were anteiso-C15:0 and C16:0. The polar lipids of strain ML311-T8T were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, three unidentified amino lipids, and three unidentified lipids. On the basis of polyphasic taxonomic analysis, the strain ML311-T8T is proposed to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus psychroresistens sp. nov. is proposed. The type strain is ML311-T8T (= KCCM 43190T = JCM 31243T).

      • KCI등재

        Taxonomic description and draft genome of Pseudomonas sediminis sp. nov., isolated from the rhizospheric sediment of Phragmites karka

        Pratiksha Behera,Madhusmita Mahapatra,Arman Seuylemezian,Parag Vaishampayan,V. Venkata Ramana,Neetha Joseph,Amaraja Joshi,Yogesh Shouche,Mrutyunjay Suar,Ajit K. Pattnaik,Gurdeep Rastogi 한국미생물학회 2018 The journal of microbiology Vol.56 No.7

        The taxonomic position of a Gram-stain-negative, rod-shaped bacterial strain, designated PI11T , isolated from the rhizospheric sediment of Phragmites karka was characterized using a polyphasic approach. Strain PI11T could grow optimally at 1.0% NaCl concentration with pH 7.0 at 30°C and was positive for oxidase and catalase but negative for hydrolysis of starch, casein, and esculin ferric citrate. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain PI11T belonged to the genus Pseudomonas sharing the highest sequence similarities with Pseudomonas indoloxydans JCM 14246T (99.72%), followed by, Pseudomonas oleovorans subsp. oleovorans DSM 1045T (99.29%), Pseudomonas toyotomiensis JCM 15604T (99.15%), Pseudomonas chengduensis DSM 26382T (99.08%), Pseudomonas oleovorans subsp. lubricantis DSM 21016T (99.08%), and Pseudomonas alcaliphila JCM 10630T (99.01%). Experimental DNA-DNA relatedness between strain PI11T and P. indoloxydans JCM 14246T was 49.4%. The draft genome of strain PI11T consisted of 4,884,839 bp. Average nucleotide identity between the genome of strain PI11T and other closely related type strains ranged between 77.25–90.74%. The polar lipid pattern comprised of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine. The major (> 10%) cellular fatty acids were C18:1 ω6c/ω7c, C16:1 ω6c/ω7c, and C16:0. The DNA G + C content of strain PI11T was 62.4 mol%. Based on the results of polyphasic analysis, strain PI11T was delineated from other closely related type strains. It is proposed that strain PI11T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas sediminis sp. nov. is proposed. The type strain is PI11T (= KCTC 42576T = DSMZ 100245T).

      • KCI등재

        Baekduia soli gen. nov., sp. nov., a novel bacterium isolated from the soil of Baekdu Mountain and proposal of a novel family name, Baekduiaceae fam. nov.

        An, Dong-Shan,Siddiqi, Muhammad Zubair,Kim, Kyoung-Ho,Yu, Hong-Shan,Im, Wan-Taek MICROBIOLOGICAL SOCIETY OF KOREA 2018 JOURNAL OF MICROBIOLOGY -SEOUL- Vol.56 No.1

        A taxonomic study was conducted on <TEX>$BR7-21^T$</TEX>, a bacterial strain isolated from the soil of a ginseng field in Baekdu Mountain. Comparative studies of the 16S rRNA gene sequence showed that the isolate was most closely related to Conexibacter woesei DSM <TEX>$14684^T$</TEX>, Solirubrobacter pauli ATCC <TEX>$BAA-492^T$</TEX>, Patulibacter minatonensis JCM <TEX>$12834^T$</TEX>, with 93.8%, 92.4%, and 91.5% sequence similarity, respectively; each genus represented a family in the order Solirubrobacterales. Strain <TEX>$BR7-21^T$</TEX> was Gram-reaction positive, non-spore forming, aerobic, non-motile, and short rod-shaped. It grew well on half-strength R2A medium. The G + C content of the genomic DNA was 73.9%. It contained meso-diaminopimelic acid in the cell wall and the major menaquinones were MK-7(<TEX>$H_4$</TEX>) and MK-8(<TEX>$H_4$</TEX>). The major fatty acids were summarized as (<TEX>$C_{16:1}\;{\omega}7c/iso-C_{15:0}\;2-OH$</TEX>), <TEX>$iso-C_{16:0}$</TEX>, and <TEX>$C_{17:0}$</TEX> cyclo. On the basis of polyphasic evidence, it was proposed that strain <TEX>$BR7-21^T$</TEX> should be placed in a new genus and species, for which the name Baekduia soli gen. nov., sp. nov. was proposed with the type strain <TEX>$BR7-21^T$</TEX> (<TEX>$=KCTC\;22257^T=LMG\;24797^T$</TEX>). The family Baekduiaceae fam. nov. is proposed to encompass the genus Baekduia gen. nov.

      • KCI등재

        Sphingomonas abietis sp. nov., an Endophytic Bacterium Isolated from Korean Fir

        Jiang Lingmin,Choe Hanna,Peng Yuxin,Jeon Doeun,Cho Donghyun,Jiang Yue,Lee Ju Huck,Kim Cha Young,Lee Jiyoung 한국미생물·생명공학회 2023 Journal of microbiology and biotechnology Vol.33 No.10

        PAMB 00755T , a bacterial strain, was isolated from Korean fir leaves. The strain exhibits yellow colonies and consists of Gram-negative, non-motile, short rods or ovoid-shaped cells. It displays optimal growth conditions at 20°C, 0% NaCl, and pH 6.0. Results of 16S rRNA gene-based phylogenetic analyses showed that strain PAMB 00755T was most closely related to Sphingomonas chungangi MAH-6T (97.7%) and Sphingomonas polyaromaticivorans B2-7T (97.4%), and ≤96.5% sequence similarity to other members of the genus Sphingomonas. The values of average nucleotide identity (79.9–81.3%), average amino acid identity (73.3–75.9%), and digital DNA–DNA hybridization (73.3– 75.9%) were significantly lower than the threshold values for species boundaries; these overall genome-related indexes (OGRI) analyses indicated that the strain represents a novel species. Genomic analysis revealed that the strain has a 4.4-Mbp genome encoding 4,083 functional genes, while the DNA G+C content of the whole genome is 66.1%. The genome of strain PAMB 00755T showed a putative carotenoid biosynthetic cluster responsible for its antioxidant activity. The respiratory quinone was identified as ubiquinone 10 (Q-10), while the major fatty acids in the profile were identified as C18:1ω7c and/or C18:1ω6c (summed feature 8). The major polar lipids of strain PAMB 00755T were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, and phosphatidylcholine. Based on a comprehensive analysis of genomic, phenotypic, and chemotaxonomic characteristics, we proposed the name Sphingomonas abietis sp. nov. for this novel species, with PAMB 00755T as the type strain (= KCTC 92781T = GDMCC 1.3779T ).

      • KCI등재

        Abyssisolibacter fermentans gen. nov. sp. nov., isolated from deep sub-seafloor sediment

        김원덕,Jung-Hyun Lee,Kae Kyoung Kwon 한국미생물학회 2016 The journal of microbiology Vol.54 No.5

        A Gram-staining-negative, thin rod-shaped, anaerobic bacterium designated MCWD3T was isolated from sediment of the deep sea in Ulleung Basin, East Sea, Korea. The ranges of temperature, pH and NaCl for growth of this strain were 15– 40°C (optimum 29°C), 5.0–10.0 (optimum pH 6.5), and 1–5%, respectively. The major fatty acids were iso-C15:0 (30%) and iso-C15:0 dimethyl acetal (17%). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and unidentified aminophospholipids, phospholipids, and aminolipids. The fermentation product from yeast extract was acetate. Phylogenetic analysis based on 16S rRNA genes indicated that the isolate was related to Sporosalibacterium faouarense (92.8% sequence identity), Clostridiisalibacter paucivorans (92.6%), and Brassicibacter mesophilus (92.4%). However, the isolate was differentiated from these genera by both physiological and chemotaxonomical properties. On the basis of a polyphasic taxonomic analysis, we propose that MCWD3T represents a novel taxon with the name Abyssisolibacter fermentans gen. nov. sp. nov.

      • KCI등재

        Baekduia soli gen. nov., sp. nov., a novel bacterium isolated from the soil of Baekdu Mountain and proposal of a novel family name, Baekduiaceae fam. nov.

        Dong-Shan An,Muhammad Zubair Siddiqi,김경호,Hong Shan Yu,임완택 한국미생물학회 2018 The journal of microbiology Vol.56 No.1

        A taxonomic study was conducted on BR7-21T, a bacterial strain isolated from the soil of a ginseng field in Baekdu Mountain. Comparative studies of the 16S rRNA gene sequence showed that the isolate was most closely related to Conexibacter woesei DSM 14684T, Solirubrobacter pauli ATCC BAA-492T, Patulibacter minatonensis JCM 12834T, with 93.8%, 92.4%, and 91.5% sequence similarity, respectively; each genus represented a family in the order Solirubrobacterales. Strain BR7-21T was Gram-reaction positive, non-spore forming, aerobic, non-motile, and short rod-shaped. It grew well on half-strength R2A medium. The G + C content of the genomic DNA was 73.9%. It contained meso-diaminopimelic acid in the cell wall and the major menaquinones were MK-7(H4) and MK-8(H4). The major fatty acids were summarized as (C16:1 ω7c/iso-C15:0 2-OH), iso-C16:0, and C17:0 cyclo. On the basis of polyphasic evidence, it was proposed that strain BR7- 21T should be placed in a new genus and species, for which the name Baekduia soli gen. nov., sp. nov. was proposed with the type strain BR7-21T (= KCTC 22257T = LMG 24797T). The family Baekduiaceae fam. nov. is proposed to encompass the genus Baekduia gen. nov.

      • KCI등재

        Deinococcus seoulensis sp. nov., a bacterium isolated from sediment at Han River in Seoul, Republic of Korea

        이재진,이연희,박수진,임상용,정선욱,이승열,조영제,김명겸,정희영 한국미생물학회 2016 The journal of microbiology Vol.54 No.8

        Strain 16F1ET was isolated from a 3-kGy-irradiated sediment sample collected at Han River in Seoul, Republic of Korea. Cells of this strain were observed to be Gram-positive, pililike structure, and short rod shape, and colonies were red in color. The strain showed the highest degree of 16S rRNA gene sequence similarity to Deinococcus aquaticus PB314T (98.8%), Deinococcus depolymerans TDMA-24T (98.1%), Deinococcus caeni Ho-08T (98.0%), and Deinococcus grandis DSM 3963T (97.0%). 16S rRNA gene sequence analysis identified this strain as a member of the genus Deinococcus (Family: Deinococcaceae). The genomic DNA G+C content of strain 16F1ET was 66.9 mol%. The low levels of DNA-DNA hybridization (< 56.2%) with the species mentioned above identified strain 16F1ET as a novel Deinococcus species. Its oxidase and catalase activities as well as the production of acid from glucose were positive. Growth of the strain was observed at 10–37°C (optimum: 20–30°C) and pH 4–10 (optimum: pH 7–8). The cells tolerated less than 5% NaCl and had low resistance to gamma radiation (D10 < 4 kGy). Strain 16F1ET possessed the following chemotaxonomic characteristics: C16:0, C15:1 ω6c, and C16:1 ω7c as the major fatty acids; phosphoglycolipid as the predominant polar lipid; and menaquinone-8 as the predominant respiratory isoprenoid quinone. Based on the polyphasic evidence, as well as the phylogenetic, genotypic, phenotypic, and chemotaxonomic characterization results, strain 16F1ET (=KCTC 33793T =JCM 31404T) is proposed to represent the type strain of a novel species, Deinococcus seoulensis sp. nov.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼