RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine): a case report

        Cyril Villat,Brigitte Grosgogeat,Dominique Seux,Pierre Farge 대한치과보존학회 2013 Restorative Dentistry & Endodontics Vol.38 No.4

        The restorative management of deep carious lesions and the preservation of pulp vitality of immature teeth present real challenges for dental practitioners. New tricalcium silicate cements are of interest in the treatment of such cases. This case describes the immediate management and the follow-up of an extensive carious lesion on an immature second right mandibular premolar. Following anesthesia and rubber dam isolation, the carious lesion was removed and a partial pulpotomy was performed. After obtaining hemostasis, the exposed pulp was covered with a tricalcium silicate cement (Biodentine, Septodont) and a glass ionomer cement (Fuji IX extra, GC Corp.) restoration was placed over the tricalcium silicate cement. A review appointment was arranged after seven days, where the tooth was asymptomatic with the patient reporting no pain during the intervening period. At both 3 and 6 mon follow up, it was noted that the tooth was vital, with normal responses to thermal tests. Radiographic examination of the tooth indicated dentin-bridge formation in the pulp chamber and the continuous root formation. This case report demonstrates a fast tissue response both at the pulpal and root dentin level. The use of tricalcium silicate cement should be considered as a conservative intervention in the treatment of symptomatic immature teeth.

      • KCI등재

        Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine): a case report

        Villat, Cyril,Grosgogeat, Brigitte,Seux, Dominique,Farge, Pierre The Korean Academy of Conservative Dentistry 2013 Restorative Dentistry & Endodontics Vol.38 No.4

        The restorative management of deep carious lesions and the preservation of pulp vitality of immature teeth present real challenges for dental practitioners. New tricalcium silicate cements are of interest in the treatment of such cases. This case describes the immediate management and the follow-up of an extensive carious lesion on an immature second right mandibular premolar. Following anesthesia and rubber dam isolation, the carious lesion was removed and a partial pulpotomy was performed. After obtaining hemostasis, the exposed pulp was covered with a tricalcium silicate cement (Biodentine, Septodont) and a glass ionomer cement (Fuji IX extra, GC Corp.) restoration was placed over the tricalcium silicate cement. A review appointment was arranged after seven days, where the tooth was asymptomatic with the patient reporting no pain during the intervening period. At both 3 and 6 mon follow up, it was noted that the tooth was vital, with normal responses to thermal tests. Radiographic examination of the tooth indicated dentin-bridge formation in the pulp chamber and the continuous root formation. This case report demonstrates a fast tissue response both at the pulpal and root dentin level. The use of tricalcium silicate cement should be considered as a conservative intervention in the treatment of symptomatic immature teeth.

      • KCI등재

        The Effect of C3S and Hardener on Setting Properties and Compressive Strength of Calcium Phosphate Cement

        Ekavianty Prajatelistia,천성수,김석영 한국생체재료학회 2012 생체재료학회지 Vol.16 No.2

        Tetracalcium phosphate (TTCP) is one of the most common starting materials of calcium phosphate-based ceramic bone cement. However, the ceramic bone cement has a critical drawback such as poor mechanical properties and slow setting time. In this study, the thermodynamically unstable tricalcium silicate (C3S) was synthesized and introduced into TTCP-based bone cement to enhance the mechanical and setting properties of the bone cement. The cement properties and compressive strength of hardened TTCP-cement with the addition of C3S were examined in terms of the contents of C3S and hardener. First, TTCP and DCPD with C3S (0; 5; 10 wt%) were ball milled for 24 hrs and then dried at 60oC for 1 day. The sample powder was mixed with the solution of a hardener (Na2HPO4.nH2O) with various concentrations (0, 0.5, 1.0 mol/L). The hydration of TTCP and DCPD resulted in the precipitation of HA crystallites and is the major driving force of setting for the TTCP-based bone cements. The XRD peaks of the hardened cements were identified as a mainly HA. With the addition of C3S, the cement showed a longer setting reaction time and lower setting temperature. However, the addition of hardener caused a higher setting temperature and faster setting time. The Vicat setting time decreased with the addition of hardener, but showed anomalous results with the C3S content. The incorporation of both hardener and C3S to cements would come with both the increase of mechanical strength and the reduction of setting time. However, the effect of C3S addition was not significant.

      • KCI등재

        광중합 시간과 거리의 변화에 따른 TheraCal LC의 중합도 평가

        배상용,이제우,라지영 대한소아치과학회 2019 大韓小兒齒科學會誌 Vol.46 No.4

        이 연구의 목적은 tricalcium silicate cement 중 하나인 TheraCal LC의 광중합 시간과 거리에 따른 중합도를 평가하는 것이었다. 금속주형을 이용해 시편을 제작하여 Vickers hardness number (VHN)를 측정하였으며, 중합시간과 조사시간에 따른 시편의 미세경도 값을비교 분석하였다. 그 결과, 모든 군에서 상면의 VHN이 하면의 VHN보다 유의성 있게 컸다(p < 0.05). 하면의 VHN은 모든 중합거리에서 중합시간이증가함에 따라 유의하게 증가하였고(p < 0.05), 중합시간이 일정하고 중합거리가 4.0 mm 이상이 되었을 때 유의하게 감소하였다(p < 0.05). 또한 시편을 20초간 중합한 경우 하면의 VHN은 2를 넘지 못했으며 이는 상면의 10%에 해당하였다. 이 연구 결과에 의하면, 모든 중합거리에서 TheraCal LC 시편의 하면까지 중합하기에 20초의 광중합 시간은 충분하지 않았으며, 중합도를 높이기 위해서 중합시간의 증가와 도포 두께의 감소를 고려해볼 필요가 있다. The purpose of this study was to evaluate polymerization of TheraCal LC, one of the tricalcium silicate cements. To measure the Vickers hardness number (VHN), the specimens were cured at different light curing time and distance. As a result, the VHN of the upper surface was significantly higher than the lower surface’s in all groups (p < 0.05). The VHN of the lower surface was increased significantly with the increase of the light curing time in all distance (p < 0.05). When the distance was more than 4.0 mm at all light curing time, the VHN of lower surface was significantly decreased (p < 0.05). When the specimen was light cured for 20 seconds, the VHN of the lower surface did not exceed 2, which corresponds to 10% of the upper surface’s. These results suggested that the 20 second light curing time was not sufficient to polymerize the lower surface under specific conditions and that light-curing time should be increased.

      • KCI등재후보

        The origins and evolution of cement hydration models

        Tiantian Xie,Joseph J. Biernacki 사단법인 한국계산역학회 2011 Computers and Concrete, An International Journal Vol.8 No.6

        Our ability to predict hydration behavior is becoming increasingly relevant to the concrete community as modelers begin to link material performance to the dynamics of material properties and chemistry. At early ages, the properties of concrete are changing rapidly due to chemical transformations that affect mechanical, thermal and transport responses of the composite. At later ages, the resulting, nano-, micro-, meso- and macroscopic structure generated by hydration will control the life-cycle performance of the material in the field. Ultimately, creep, shrinkage, chemical and physical durability, and all manner of mechanical response are linked to hydration. As a way to enable the modeling community to better understand hydration, a review of hydration models is presented offering insights into their mathematical origins and relationships one-to-the-other. The quest for a universal model begins in the 1920’s and continues to the present, and is marked by a number of critical milestones. Unfortunately, the origins and physical interpretation of many of the most commonly used models have been lost in their overuse and the trail of citations that vaguely lead to the original manuscripts. To help restore some organization, models were sorted into four categories based primarily on their mathematical and theoretical basis: (1) mass continuity-based, (2) nucleation-based, (3) particle ensembles, and (4) complex multiphysical and simulation environments. This review provides a concise catalogue of models and in most cases enough detail to derive their mathematical form. Furthermore, classes of models are unified by linking them to their theoretical origins, thereby making their derivations and physical interpretations more transparent. Models are also used to fit experimental data so that their characteristics and ability to predict hydration calorimetry curves can be compared. A sort of evolutionary tree showing the progression of models is given along with some insights into the nature of future work yet needed to develop the next generation of cement hydration models.

      • KCI등재

        Comparison of Microleakage and Compressive Strength of Different Base Materials

        장은영,이제식,남순현,권태엽,김현정,Jang, Eunyeong,Lee, Jaesik,Nam, Soonhyeun,Kwon, Taeyub,Kim, Hyunjung Korean Academy of Pediatric Dentistry 2021 大韓小兒齒科學會誌 Vol.48 No.2

        이 연구는 깊은 와동에서 기저재로 사용되는 5개의 기저재용 재료를 대상으로 미세누출 및 압축강도 평가를 시행하였다. 미세누출 평가를 위해 발거된 영구 소구치 50개를 준비하여 베이스 재료에 따라 10개씩 군을 나누었다. 치아의 순면에 가로 5.0 mm, 세로 3.0 mm, 높이 3.0 mm 크기의 와동을 형성하였다. 형성된 와동에 1.0 mm 두께로 각 베이스 재료를 충전하였다. 이후 와동의 상방부를 composite resin으로 최종수복 시행하였으며, 시편을 2% 메틸렌블루 용액에 침적시킨 후 치아를 절삭하였고 실체현미경(× 30)을 이용해 미세누출 정도를 평가하였다. 압축강도 평가를 위해 각 재료 별로 5개씩의 원통형 시편을 제작하였다. 이후 만능시험기를 이용해 압축강도를 평가하였다. 미세누출 평가에서 Riva light cure<sup>TM</sup>가 가장 큰 미세누출을 보였으며, Well-Root PT와 Biodentine이 가장 적은 미세누출을 보였다. 압축강도는 모든 군이 베이스 재료로서 받아들일 만한 강도를 보였다. Fuji II LC가 가장 높은 압축강도를 보였으며 Well-Root PT가 가장 낮은 강도를 보였다. This study compared the microleakages and compressive strengths of various base materials. To evaluate microleakages, 50 extracted permanent premolars were prepared. The teeth divided into 5 groups of 10 each according to the base materials. Cavities with a 5.0 mm width, 3.0 mm length, and 3.0 mm depth were formed on the buccal surfaces of the teeth. After filling the cavities with different base materials, a composite resin was used for final restoration. Each specimen was immersed in 2% methylene blue solution and then observed under a stereoscopic microscope (× 30). To evaluate the compressive strength, 5 cylindrical specimens were prepared for each base material. A universal testing machine was used to measure the compressive strength. The microleakage was highest in the Riva light cure<sup>TM</sup> group and lowest in the Biodentine<sup>TM</sup> and Well-Root<sup>TM</sup> PT groups. For the compressive strengths, in all groups, acceptable strength values for base materials were found. The highest compressive strength was observed in the Fuji II LC<sup>TM</sup> group and the lowest strength in the Well-Root<sup>TM</sup> PT group.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼