RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Bioinformatics Analysis of Hsp20 Sequences in Proteobacteria

        Michelle Heine,Sathees B.C.Chandra 한국유전체학회 2009 Genomics & informatics Vol.7 No.1

        Heat shock proteins are a class of molecular chaperones that can be found in nearly all organisms from Bacteria, Archaea and Eukarya domains. Heat shock proteins experience increased transcription during periods of heat induced osmotic stress and are involved in protein disaggregation and refolding as part of a cell’s danger signaling cascade. Heat shock protein, Hsp20 is a small molecular chaperone that is approximately 20kDa in weight and is hypothesized to prevent aggregation and denaturation. Hsp20 can be found in several strains of Proteobacteria, which comprises the largest phyla of the Bacteria domain and also contains several medically significant bacterial strains. Genomic analyses were performed to determine a common evolutionary pattern among Hsp20 sequences in Proteobacteria. It was found that Hsp20 shared a common ancestor within and among the five subclasses of Proteobacteria. This is readily apparent from the amount of sequence similarities within and between Hsp20 protein sequences as well as phylogenetic analysis of sequences from proteobacterial and non-proteobacterial species. Heat shock proteins are a class of molecular chaperones that can be found in nearly all organisms from Bacteria, Archaea and Eukarya domains. Heat shock proteins experience increased transcription during periods of heat induced osmotic stress and are involved in protein disaggregation and refolding as part of a cell’s danger signaling cascade. Heat shock protein, Hsp20 is a small molecular chaperone that is approximately 20kDa in weight and is hypothesized to prevent aggregation and denaturation. Hsp20 can be found in several strains of Proteobacteria, which comprises the largest phyla of the Bacteria domain and also contains several medically significant bacterial strains. Genomic analyses were performed to determine a common evolutionary pattern among Hsp20 sequences in Proteobacteria. It was found that Hsp20 shared a common ancestor within and among the five subclasses of Proteobacteria. This is readily apparent from the amount of sequence similarities within and between Hsp20 protein sequences as well as phylogenetic analysis of sequences from proteobacterial and non-proteobacterial species.

      • KCI등재

        독도 주변의 해수에서 분리한 세균의 다양성과 군집구조 분석

        김사열 ( Sa Youl Ghim ),성혜리 ( Hye Ri Sung ) 한국미생물생명공학회 ( 구 한국산업미생물학회 ) 2010 한국미생물·생명공학회지 Vol.38 No.3

        독도 연안에 존재하는 배양 가능한 미생물의 다양성을 16SrRNA 분석으로 조사하였다. 동도 선착장 주변과 서도 숙소 부근을 중심으로 채취한 시료에서 163개의 해양 미생물을 분리하였다. 분리한 미생물 163종을 16S rRNA 염기서열의 분석을 이용하여 부분동정 할 수 있었다. 부분동정된 미생물은 gamma-proteobacteria(58%), alpha-proteobacteria (20%), bacteriodetes(16%) 계통이 대부분을 차지하고 있었고, 그 외에도 low G+C Gram positive bacteria와 epsilonproteobacteria가소수 동정 되었다. 염기서열이 분석된 미생 물들은 이전에 보고된 미생물들의 16S rRNA 유전자와 93.3%에서 100%의 유사도를 보이며 56속 94종으로 부분 동정되었다. 163종의 부분 동정된 미생물 중 36개의 분리 미생물이 새로운 종으로 분류될 후보군으로 추정되었다. 본 연구의 결과 독도연안 바닷물에는 proteobacteria와 bacteriodetes의 비율이 높게 나타났고, 미생물 다양성을 높게 유지하고 있었다. 이 다양한 미생물로부터 다양한 유용미생물 자원을 확보할 수 있고, 새로운 종으로 분류될 후보군 들은 추후 여러 생리생화학적 실험을 수행하여 새로운 종 또는 새로운 속으로 발표할 수 있을 것으로 판단된다. One hundred sixty three strains showing different colony morphological characteristics on different concentration of marine agar (MA) plates were isolated from ambient seawater near Dokdo island. Bacterial diversity and distributions were studied by phylogenetic analysis of the partial 16S rRNA gene sequences. One hundred sixty three strains were partially sequenced and analyzed phylogenetically. They were composed of 5 phyla, of which gamma-proteobacteria (58%), alpha-proteobacteria (20%), bacteriodetes (16%) were predominant. They were affiliated with 90 species. The 16S rRNA sequence similarity of the isolates was in 93.3 to 100 % range to reported sequence data. Thirty six isolates of among them were assumed to be novel species candidates based on similarity analysis of the 16S rRNA gene sequences. Overall, Proteobacteria and Bacteriodetes of the Dokdo coastal sea water showed a high diversity.

      • SCOPUSKCI등재

        16S rRNA 유전자 계통분석에 의한 한강수계의 세균 다양성

        한석균,이일규,안태영,Han, Suk-Kyun,Lee, Il-Gyu,Ahn, Tae-Young 한국미생물학회 1998 미생물학회지 Vol.34 No.4

        한강의 본류와 만나는 탄천과 중랑천에서 16S rDAN를 증폭하고 부분적인 염기서열 분석을 통하여 한강의 세균 다양성을 결정하였다. 총 27개의 클론을 분리하였으며 RFLP를 이용하여 7개의 group으로 나누었다. 탄천의 15개 클론은 4개의 group으로 나뉘어졌으며 가장 많은 클론을 포함하는 group(HT-1 클론)은 class Proteobacteria의 ${\delta}$-subdivision에 속하는 Acrobacter cryaerophilius와 높은 유사도를 보였으며, 다른 두 group(HT-6과 HT-9 클론)은 모두 clas Cytophagales에 속하였다. 중랑천의 12개의 클론은 3개의 group으로 나뉘어졌으며 가장 많은 클론을 보이는 group(HJ-1 클론)은 class Proteobacteria의 ${\alpha}$-subdivision에 속하는 Sphingomonas sp. 와 높은 유사도를 나타내었다. 전체적으로는 Proteobateria(alpha, beta and delta subdivision), Cytophagales와 Actinomycetales가 검출되었다. Bacterial diversity was determined by amplification and sequencing of 16S rDNA at Tancheon and Jungrang in Han river. Twenty-seven clones constructed were divided 7 groups using RFLP. Fifteen clones were classified 4 groups in Tancheon and the group (HT-1 clone) including many clones was affiliated a high similarity with Aerobacter cryaerophilus (the class Proteobacteria including members of the delta subdivisions). The other two groups (HT-6 and HT-9 clone) including several clones were classified with the class Cytophagales in Tancheon. Twelve clones were classified 3 groups in Jungrang and the group (HJ-1 clone) including many clones was affiliated a high similarity with Sphingomonas sp. (the class Proteobacteria including members of the alpha subdivisions). As a whole results, the class Proteobacteria (alpha, beta and delta subdivision), the order Cytophagales, and the order Actinomycetales were detected.

      • SCOPUSKCI등재

        16S rRNA 유전자 분석에 의한 전남 순천만 갯벌의 세균 다양성

        이명숙,홍순규,이동훈,배경숙 한국미생물학회 2001 미생물학회지 Vol.37 No.2

        순천만 갯벌의 세균 군집의 다양성을 조사하기 위해 16S rDNA의 다양성을 조사하였다. 갯벌로부터 전체 핵산을 분리한 후, 세균에 상보적인 universal primer로 증폭된 16S rDNA로부터 클론 라이브러리를 만들었다. 총 111개의 클론으로부터 HaeIII를 이용하여 amplified rDNA restriction analysis (ARDRA)를 수행하고, Gelcompar II 프로그램을 이용하여 pattern을 clustering하였다. 111개의 클론 중 100가지의 서로 다른 RFLP type이 조사되었고, 이들 중 전체 클론 라이브러리를 대표할 수 있는 20개의 클론을 선별하여 부분적인 염기서열을 분석하여 세균 다양성을 분석하였다. 20개의 클론중에는 RDP와 GenBank에서 제공하는 small subunit RNA database와 동일한 클론은 존재하지 않았으며, 이미 알려진 배양 가능한 세균의 16S rRNA 염기서열과 비교 하였을때 77∼96.8%의 유사도를 보였다. 또한 이들 20개의 클론은 alpha-, delta-, gamma-Proteobacteria, low G+C Gram positive bacteria, high G+C Gram positive bacteria, Sphingobacteria (Cytophaga); Cyanobacteria (Chloroplast)등 주요한 7개 lineage에 속했으며, 클론들 중 Proteobacteria가 우점종을 차지하고 있었다. In order to investigate the diversity of bacterial community in the mud flat of Sunchon Bay, Chunnam province, diversity of amplified 16S rDNA was examined. Total DNA was extracted from sediment soils and 16S rDNAs were amplified using PCR primers based on the universally conserved sequences in bacteria. Clonal libraries were constructed and 111 clones were examined by amplified rDNA restriction analysis (ARDRA) using HaeIII. Clones were clustered based on restriction patterns using computer program, GelCompar II. One hundred different RFLP types were detected from 111 clones. The 20 clones were selected and sequenced according to dendrograms derived from ARDRA, to cover most of the bacterial diversity in the clone libraries. None of the clones were identical to any representatives in the Ribosomal Database Project small subunit RNA databases and GenBank. All sequences showed between 77 and 96.8% similarity to the known 16s rRNA sequence from cultured organisms. The 20 clones sequenced fell into seven major lineages of the domain Bacteria: alpha-, delta-, gamma-Proteobacteria, low G+C Gram positive bacteria, high G+C Gram positive bacteria, Sphingobacteria (Cytophaga) and Cyanobacteria (chloroplast). Among the clones, the Proteobacteria were dominant.

      • KCI등재후보

        Bioinformatics Analysis of Hsp20 Sequences in Proteobacteria

        Heine, Michelle,Chandra, Sathees B.C. Korea Genome Organization 2009 Genomics & informatics Vol.7 No.1

        Heat shock proteins are a class of molecular chaperones that can be found in nearly all organisms from Bacteria, Archaea and Eukarya domains. Heat shock proteins experience increased transcription during periods of heat induced osmotic stress and are involved in protein disaggregation and refolding as part of a cell's danger signaling cascade. Heat shock protein, Hsp20 is a small molecular chaperone that is approximately 20kDa in weight and is hypothesized to prevent aggregation and denaturation. Hsp20 can be found in several strains of Proteobacteria, which comprises the largest phyla of the Bacteria domain and also contains several medically significant bacterial strains. Genomic analyses were performed to determine a common evolutionary pattern among Hsp20 sequences in Proteobacteria. It was found that Hsp20 shared a common ancestor within and among the five subclasses of Proteobacteria. This is readily apparent from the amount of sequence similarities within and between Hsp20 protein sequences as well as phylogenetic analysis of sequences from proteobacterial and non-proteobacterial species.

      • KCI등재

        The first record of nine bacterial species belonging to the phylum Proteobacteria in Korea

        Kim, Dong-Uk,Kang, Myung-Suk,Kim, Ju-Young,Kim, Myung Kyum The National Institute of Biological Resources 2017 Journal of species research Vol.6 No.3

        As part of a larger study with the aim to discover indigenous prokaryotic species in Korea, nine bacterial strains were isolated and assigned to the phylum Proteobacteria in 2016. High 16S rRNA gene sequence similarity (>98.5%) and formation of a robust phylogenetic clades with known species indicated that each strain belongs to an independent and predefined bacterial species. This is the first report of these nine species in Korea: two strains of the Methylobacterium, two strains of the Microvirga, one strain of the Pantoea, and four strains of the Psychrobacter, all within the Proteobacteria. Gram reaction, colony and cell morphology, basic biochemical characteristics, and isolation sources are also described in the species description section.

      • KCI등재후보

        The first record of nine bacterial species belonging to the phylum Proteobacteria in Korea

        김동욱,강명숙,김주영,김명겸 국립생물자원관 2017 Journal of species research Vol.6 No.3

        As part of a larger study with the aim to discover indigenous prokaryotic species in Korea, nine bacterial strains were isolated and assigned to the phylum Proteobacteria in 2016. High 16S rRNA gene sequence similarity (>98.5%) and formation of a robust phylogenetic clades with known species indicated that each strain belongs to an independent and predefined bacterial species. This is the first report of these nine species in Korea: two strains of the Methylobacterium, two strains of the Microvirga, one strain of the Pantoea, and four strains of the Psychrobacter, all within the Proteobacteria. Gram reaction, colony and cell morphology, basic biochemical characteristics, and isolation sources are also described in the species description section.

      • KCI등재

        Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species

        성치남,김미선,강주원,박희문 국립생물자원관 2019 Journal of species research Vol.8 No.2

        The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju. Most Halomonadaceae species isolated from Korean fermented foods and solar salterns were halophilic or halotolerant. Air-borne members of the genera Microvirga, Methylobacterium, and Massilia had common characteristics in terms of G+C content, major respiratory quinones, and major polar lipids.

      • KCI등재

        Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species

        Seong, Chi Nam,Kim, Mi Sun,Kang, Joo Won,Park, Hee-Moon The National Institute of Biological Resources 2019 Journal of species research Vol.8 No.2

        The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey's Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju. Most Halomonadaceae species isolated from Korean fermented foods and solar salterns were halophilic or halotolerant. Air-borne members of the genera Microvirga, Methylobacterium, and Massilia had common characteristics in terms of G+C content, major respiratory quinones, and major polar lipids.

      • KCI등재

        혼합폐수의 효율적인 처리를 위한 생물학적 처리공정 내의 미생물 군집 특성 분석

        손형식(Hyeng-Sik Son),손희종(Hee-Jong Son),이상준(Sang-Joon Lee) 한국생물공학회 2013 KSBB Journal Vol.28 No.3

        Depending on season, mixed wastewater can show great deviations in terms of the influent ratios of tannery and seafood-wastewater. Increases in the ratio of tannery wastewater in influent water also result in increases in the concentration of chromium, which decreases the ratio of BOD/T-N so that the removal efficiency of organic and nitrogen pollutants in biological wastewater treatment deteriorates. No substantial differences occur in the ratios of Eubacteria/total bacteria as the ratio between tannery wastewater and seafood wastewater changes in the influent water. In contrast, the cell numbers and activities of Eubacteria and total bacteria significantly decline with increasing ratios of tannery wastewater in the influent water. Stable removal of organic and nitrogen pollutants by biological wastewater treatments leads to dominance of Proteobacteria groups in all biological treatment basins. In aeration and oxic basins, γ-Proteobacteria account for approximately 21% of the Eubacteria groups, at 1.9×10<SUP>9</SUP>~2.0×10<SUP>9</SUP> cells/mL, while in an anoxic basin, β-Proteobacteria account for approximately 19% of the Eubacteria groups, at 1.3×10<SUP>9</SUP> cells/mL. However, a substantial decline in dominance of approximately 11% occurs for γ-Proteobacteria in aeration and oxic basins and about 1% for β-Proteobacteria in an anoxic basin. Mixed wastewater that undergoes extensive property changes of the influent water shows an efficiency of biological treatment that is greatly influenced by the ratio of dominant Proteobacteria groups.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼