RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Ka-대역 10 W 전력증폭기 모듈의 설계 및 제작

        김경학(Kyeong-Hak Kim),박미라(Mi-Ra Park),김동욱(Dong-Wook Kim) 한국전자파학회 2009 한국전자파학회논문지 Vol.20 No.3

        논문에서는 다수의 MMIC 전력증폭기 칩과 박막 기판을 결합하여 MIC 모듈을 구성함으로써 Ka-대역 중심 주파수에서 10 W의 출력 전력을 낼 수 있는 전력증폭기 모듈을 설계 및 제작하였다. 전력증폭기 모듈의 제작에는 밀리미터파 대역에 적합한 수정된 형태의 윌킨슨 전력분배기/합성기를 사용하였고, 모듈의 구성 과정에서 발생할 수 있는 손실을 줄이고 공진을 억제하기 위해 CBFGCPW-Microstrip 천이 구조를 활용하였다. 전력증폭기 모듈은 총 7개의 MMIC 칩으로 구성되었으며 MMIC 칩을 펄스 모드로 동작시키기 위해 칩의 게이트에 펄스전압을 인가하는 게이트 전압 제어기가 설계되고 적용되었다. 제작된 전력증폭기 모듈의 측정 결과 58 ㏈의 전력 이득과 39.6 ㏈m의 포화 출력 전력을 얻을 수 있었다. In this paper, a Ka-band 10 W power amplifier module is designed and fabricated using MIC(Microwave Integrated Circuit) module technology which combines multiple power MMIC(Monolithic Microwave Integrated Circuit) chips on a thin film substrate. Modified Wilkinson power dividers/combiners are used for millimeter wave modules and CBFGCPW-Microstrip transitions are utilized for reducing connection loss and suppressing resonance in the high-gain and high-power modules. The power amplifier module consists of seven MMIC chips and operates in a pulsed mode. For the pulsed mode operation, a gate pulse control circuit supplying the control voltage pulses to MMIC chips is designed and applied. The fabricated power amplifier module shows a power gain of about 58 ㏈ and a saturated output power of 39.6 ㏈m at a center frequency of the interested frequency band.

      • KCI등재

        펄스 타이밍 제어를 활용한 Ka-대역 10 W 전력증폭기 모듈

        장석현(Seok-Hyun Jang),김경학(Kyeong-Hak Kim),권태민(Tae-Min Kwon),김동욱(Dong-Wook Kim) 大韓電子工學會 2009 電子工學會論文誌-TC (Telecommunications) Vol.46 No.12

        본 논문에서는 7개의 MMIC 전력증폭기 칩과 박막기판을 결합하여 MIC 모듈을 구성함으로써 Ka-대역 중심주파수 영역에서 10 W 이상의 출력전력을 가지는 펄스모드 전력증폭기 모듈을 설계하고 제작하였다. 전력증폭기 모듈의 제작에는 밀리미터파 대역에 적합한 수정된 형태의 윌킨슨 전력분배기/합성기와 모듈의 조립과정에서 공진을 억제하고 작은 삽입손실 특성을 보이는 CBFGCPW-Microstrip 천이구조를 활용하였다. 전력용 MMIC 바이어스 회로에 사용된 큰 값의 바이패스 캐패시터에 의해 발생되는 펄스모드 출력전력의 감소를 개선하고자 TTL 펄스 타이밍 제어 기법을 제안하였다. 제안된 방법을 10 ㎑, 5 μ sec 펄스모드로 동작하는 전력증폭기 모듈에 적용한 결과 펄스모드 동작시간을 200 nsec 이상 개선할 수 있었고 0.62 W의 출력전력을 향상시킬 수 있었다. 구현된 전력증폭기 모듈은 59.5 ㏈의 전력이득과 11.89 W의 출력전력을 보여주었다. In this paper, a Ka-band 10 W power amplifier module with seven power MMIC bare dies is designed and fabricated using MIC technology which combines multiple MMIC chips on a thin film substrate. Modified Wilkinson power dividers/combiners and CBFGCPW-Microstrip transitions for suppressing resonance and reducing connection loss are utilized for high-gain and high-power millimeter wave modules. A new TTL pulse timing control scheme is proposed to improve output power degradation due to large bypass capacitors in the gate bias circuit. Pulse-mode operation time is extended more than 200 nsec and output power increase of 0.62 W is achieved by applying the proposed scheme to the Ka-band 10 W power amplifier module operating in the pulsed condition of 10 ㎑ and 5 μsec. The implemented power amplifier module shows a power gain of 59.5 ㏈ and an output power of 11.89 W.

      • KCI등재

        제로 에너지 건축물을 위한 자립형 저전력 IoT 센서 모듈 개발에 대한 연구

        강자윤(Ja-Yoon Kang),조영찬(Young-Chan Cho),김희준(Hee-Jun Kim) 한국정보전자통신기술학회 2019 한국정보전자통신기술학회논문지 Vol.12 No.3

        국가 총에너지 소비량 중 건축물에서 소비하는 에너지는 전체의 10% 이상을 차지고 있다. 이러한 이유로 우리나라는 2025년부터 제로에너지 건물 의무화 정책을 채택하였고, 결국 건축물 에너지 절감 기술에 대한 연구가 요구되고 있다. 건축물 중 빌딩의 에너지 소비 형태를 분석해보면 조명 및 냉난방 에너지가 전체 에너지 소비량의 60% 이상을 차지하고 있는데, 이는 태양광 취득률 및 창문의 개폐 운용과 직접적인 연관이 있다. 본 논문에서는 건축물에너지 관리시스템에 취득 정보를 전송하기 위한 창호용 저전력 IoT 센서 모듈을 개발하기 위해 연구를 진행하였다. 이 모듈은 외부 환경 및 창문 개폐 상태 정보를 실시간으로 빌딩 에너지 관리 시스템에 전송하여 능동적으로 에너지 절감 조치를 취할 수 있게 네트워크를 구성하였다. 모듈에 사용되는 전력은 하베스트 에너지 중 태양광 발전을 이용한 독립적인 전원으로 설계하였다. 전원은 Buck 컨버터를 적용하여 MPPT 제어를 통해 리튬이온 배터리에 4V로 충전하는 방식으로 효율은 약 85.87%이다. 통신은 WiFi 방식을 적용하여 실시간으로 전송할 수 있도록 구성하였다. 모듈의 소비전력 저감을 위해 하드웨어 및 소프트웨어 측면에서 분석하여 저전력 IoT 센서 모듈을 구현에 대한 연구를 진행하였다. The energy consumed by buildings among the total national energy consumption is more than 10% of the total. For this reason, Korea has adopted the zero energy building policy since 2025, and research on the energy saving technology of buildings has been demanded. Analysis of buildings" energy consumption patterns shows that lighting, heating and cooling energy account for more than 60% of total energy consumption, which is directly related to solar power acquisition and window opening and closing operation. In this paper, we have developed a low - power IoT sensor module for window system to transfer acquired information to building energy management system. This module transmits the external environment and window opening / closing status information to the building energy management system in real time, and constructs the network to actively take energy saving measures. The power used in the module is designed as an independent power source using solar power among the harvest energy. The topology of the power supply is a Buck converter, which is charged at 4V to the lithium ion battery through MPPT control, and the efficiency is about 85.87%. Communication is configured to be able to transmit in real time by applying WiFi. In order to reduce the power consumption of the module, we analyzed the hardware and software aspects and implemented a low power IoT sensor module.

      • KCI등재

        5kW급 투광형 박막 BIPV시스템의 실증연구

        안영섭,김성태,이성진,송종화,황상근,윤종호 한국태양에너지학회 2010 한국태양에너지학회 논문집 Vol.30 No.4

        This study has been carried out empirical research on Transparent Thin-film BIPV modules, BIPV modules installed on the exterior of the building are applied a laminated module 1kWp, double-glazing module 3kWp and triple-glazing module 1kWp. Applied to the total capacity of BIPV modules are 5kWp. In this study, design and construction process of BIPV systems is presented. In addition, through monitoring of the BIPV system, the temperature and the power characteristics of each module were analyzed. During the measurement period, the module temperature measurement results, the maximum surface temperature of 51.5℃ triple-glazing BIPV module showed the highest, followed by double-glazing BIPV module 49.1℃, 44.7℃ laminated modules, respectively. Power output results, the daily average double-layer modules showed 4.10kWh/day, triple-glazing module 1.57kWh, respectively 1.81kWh laminated modules. In particular, the power efficiency of triple-glazing BIPV module was lower than the power efficiency of the laminated BIPV module. This phenomenon is considered to be affected by the module temperature. In the future, BIPV modules in this study the relationship between module temperature and power characteristics plans to identify.

      • KCI등재

        전기자동차용 고신뢰성 파워모듈 패키징 기술

        윤정원,방정환,고용호,유세훈,김준기,이창우,Yoon, Jeong-Won,Bang, Jung-Hwan,Ko, Yong-Ho,Yoo, Se-Hoon,Kim, Jun-Ki,Lee, Chang-Woo 한국마이크로전자및패키징학회 2014 마이크로전자 및 패키징학회지 Vol.21 No.4

        The paper gives an overview of the concepts, basic requirements, and trends regarding packaging technologies of power modules in hybrid (HEV) and electric vehicles (EV). Power electronics is gaining more and more importance in the automotive sector due to the slow but steady progress of introducing partially or even fully electric powered vehicles. The demands for power electronic devices and systems are manifold, and concerns besides aspects such as energy efficiency, cooling and costs especially robustness and lifetime issues. Higher operation temperatures and the current density increase of new IGBT (Insulated Gate Bipolar Transistor) generations make it more and more complicated to meet the quality requirements for power electronic modules. Especially the increasing heat dissipation inside the silicon (Si) leads to maximum operation temperatures of nearly $200^{\circ}C$. As a result new packaging technologies are needed to face the demands of power modules in the future. Wide-band gap (WBG) semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) have the potential to considerably enhance the energy efficiency and to reduce the weight of power electronic systems in EVs due to their improved electrical and thermal properties in comparison to Si based solutions. In this paper, we will introduce various package materials, advanced packaging technologies, heat dissipation and thermal management of advanced power modules with extended reliability for EV applications. In addition, SiC and GaN based WBG power modules will be introduced.

      • High Density 50 ㎾ SiC Inverter Systems Using a JFET Based Six-Pack Power Module

        Timothy Junghee Han,Jim Nagashima,Sung Joon Kim,Srikanth Kulkarni,Fred Barlow 전력전자학회 2011 ICPE(ISPE)논문집 Vol.2011 No.5

        Recent progress on Silicon Carbide (SiC) power devices has shown their better power conversion efficiency compared to Silicon power devices due to the significant reduction in both conduction and switching losses. Combined with their high operating junction temperature capability, six-pack SiC power modules have been developed for high reliable and compact power systems. This paper focuses on the development of a high efficiency and high temperature inverter based on fully integrated SiC power modules. The main topic includes the SiC power module design targeting on high temperature operation (Tj>200℃), full three phase inverter design and prototype development, and the inverter evaluation. A liquid cooled SiC inverter prototype with a peak power rating of 50 ㎾ has been developed and demonstrated. When tested at moderate load levels compared to the inverter rating, an efficiency of 98.5% is achieved by the initial prototype, which is higher than most Si inverters.

      • KCI등재

        루버일체식 양면형 태양광 모듈의 건축적 활용을 위한 연간 발전량 실험 분석

        조경주,조동우 한국태양에너지학회 2022 한국태양에너지학회 논문집 Vol.42 No.1

        Solar power systems are the most commonly used renewable energy systems for energy self-sufficiency in buildings. In particular, bifacial photovoltaic modules for solar power generation have been researched for their optimal application, as they can generate electricity from two sides using only a single frame. In addition, because the price of a bifacial photovoltaic module is approximately 20% higher than that of a single-sided module, installing bifacial photovoltaic modules in suitable locations on buildings can be economical. To date, most studies have primarily focused on how to increase the amount of power generation from rear cells by arranging materials with high reflectivity on the floors of buildings. In point of fact, when bifacial photovoltaic modules are arranged in an east-west orientation, the maximum amount of power can be obtained in the mornings and afternoons. However, when these modules are installed in buildings in this orientation, a shadow is produced on the building surface according to the trajectory of the sun. In addition, when photovoltaic modules are used in the building envelope, the amount of power generation is often reduced because of this shadow. Nevertheless, even when considering this reduction in power generation, if the total power generation is higher than when photovoltaic modules are installed only vertically, the self-sufficiency rates of buildings can be improved. In this study, the shadow of a bifacial photovoltaic module was simulated using vertical photovoltaic modules to consider the possibilities of architectural application of bifacial photovoltaic modules.

      • KCI등재

        압전발전 모듈의 안정성 해석 및 최적 매립위치 결정

        손인수,김지원,주홍회,조대환 한국산업융합학회 2023 한국산업융합학회 논문집 Vol.26 No.1

        In this study, an analysis was conducted to analyze the structural stability of the piezoelectric power generation module and to determine the optimal burying hole interval for concrete, the installation site of the power generation module. A piezoelectric element refers to a functional ceramic having a piezoelectric direct effect that converts mechanical energy into electrical energy and a piezoelectric reverse effect. In the analysis of the piezoelectric power generation module, the load condition was applied with about 16 tons and a total of 10 wheels in consideration of the container trailer. The purpose was to evaluate the stability of major components of the piezoelectric power generation module through finite element analysis. In order to determine the optimal burying location of the concrete ground for burying the piezoelectric power generation module, the stability of the ground structure according to the distance of the holes was determined. As a result of the analysis, the maximum stress of the piezoelectric power generation module was generated in the support spring, showing a stress of about 276.7 MPa. It was found that the spacing of holes for embedding the piezoelectric power generation module should be set to a minimum of 100 mm or more.

      • KCI등재

        대전류 펄스 성형이 가능한 150MW급 펄스파워 시스템의 설계 및 동작특성

        황선묵,권해옥,김종서,김광식,Hwang, Sun-Mook,Kwon, Hae-Ok,Kim, Jong-Seo,Kim, Kwang-Sik 한국전기전자학회 2012 전기전자학회논문지 Vol.16 No.3

        본 논문은 트리거 시간을 조절하여 펄스 성형이 가능한 150 MW 펄스 파워 시스템의 설계와 동작특성을 알아보았다. 이 시스템은 2개의 커패시터 뱅크 모듈로 구성되어 있고, 각 커패시터 뱅크 모듈은 병렬로 연결되어 있다. 그리고 커패시터 뱅크 모듈은 메인스위치, 커패시터, 에너지 덤프회로, 크로바 회로, 펄스 성형 인덕터로 구성되어 있다. 또한 이 시스템의 모듈 선택과 트리거 시간은 트리거 제어부에서 조정된다. Pspice 시뮬레이션은 실험회로의 결과를 예측하고, 시스템의 구성품의 파라미터를 결정하기 위한 것으로 사용하였다. 실험 결과, 시뮬레이션은 실험결과와 잘 일치하였다. 출력 전류의 펄스폭은 커패시터 뱅크 모듈에서의 순간적 점화 시간 제어로 300~650 us의 펄스폭이 형성되었다. 그리고 최대 전류값은 2개의 커패시터 뱅크 모듈이 동시에 트리거 되었을 때 약 40 kA 정도이다. 이 150 MW 펄스 파워 시스템은 파암 전원, Rail Gun, Coil Gun, 나노분말 제조, HPM 등과 같은 대전류 펄스 파워 시스템에 적용할 수 있다. This paper presents design and operational characteristics of 150 MW pulse power system for high current pulse forming network to control trigger time. The system is composed of two capacitor bank modules. Each capacitor bank module consist of a trigger vacuum switch, 9k 33kJ capacitor, an energy dump circuit, a crowbar circuit and a pulse shaping inductor and is connected in parallel. It is controlled by trigger controller to select operational module and determine triggering time. Pspice simulation was conducted about determining parameters of components such as crowbar circuit, capacitor, pulse forming inductor, trigger vacuum switch and predicting results of experiment circuit. The result of the experiment was in good agreement with the result of the simulation. The various current shapes with 300~650 us pulse width is formed by sequential firing time control of capacitor bank module. The maximum current is about 40 kA during simultaneous triggering of two capacitor bank modules. The developed 150 MW pulse power system can be applied to high current pulse power system such as rock fragmentation power sources, Rail gun, Coil gun, nano-powers, high power microwave.

      • SCIESCOPUS

        Ultraslim S-Type Power Supply Rails for Roadway-Powered Electric Vehicles

        Choi, Su Y.,Jeong, Seog Y.,Gu, Beom W.,Lim, Gyu C.,Rim, Chun T. IEEE 2015 IEEE transactions on power electronics Vol.30 No.11

        <P>An ultraslim S-type power supply rail, which has a width of only 4 cm, for roadway-powered electric vehicles (RPEVs) is proposed in this paper. The cross section of the core has a thin S-shape, and a vertically-wound multiturn coil is displaced inside the core. In this way, the most slim power supply rail is designed, which is crucial for the commercialization of RPEVs. The construction of roadway infrastructure, which is responsible for more than 80% of the total deployment cost for RPEVs, can be much easier when the width of the power supply rail is so small. To increase portability and to minimize construction time, a foldable power supply module is also proposed in which flexible power cables connect each foldable power supply module such that no connectors are needed during deployment. An effective winding method for minimizing the cable length is proposed, and an optimum core thickness of the proposed power supply rail is determined by FEA simulations and verified by a prototype power supply module. By virtue of the ultraslim shape, a large lateral displacement of 30 cm at an air gap of 20 cm was experimentally obtained, which is 6 cm larger than that of the I-type power supply rail. In addition to the larger lateral displacement, it is estimated that the S-type one has lower EMF than the I-type one because the width of the S-type one is narrower than that of I-type one. The maximum efficiency, excluding the inverter, was 91%, and the pick-up power was 22 kW.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼