RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        제체 상태 평가를 위한 동적 콘 관입시험과 평판재하시험 결과의 상관관계 분석

        정영훈(Young-Hoon Jung),김성민(Seongmin Kim),임정열(Jeong-yeul Lim) 한국지반환경공학회 2018 한국지반환경공학회논문집 Vol.19 No.4

        제체 재료의 다짐 불량에 의한 내부 침식은 국내 제방의 주요 붕괴 원인으로, 제방의 안전진단에 있어서 제체의 다짐 상태평가는 매우 중요한 점검 사항이다. 본 연구에서는 제체의 다짐상태 평가 시 동적 콘 관입시험의 현장 적용성을 검증하기 위해 대표적인 다짐평가 기법인 평판재하시험에 대해 상관관계를 분석하였다. 시험 부지의 지반 특성 및 토층 심도를 파악하기 위해 표준관입시험을 6회 수행하였다. 평판재하시험 15회, 동적 콘 관입시험 47회 수행 후 크리깅(Kriging) 기법으로 공간분포를 얻었다. 평판재하시험의 공간분포와 일정 관입깊이에서의 동적 콘 관입시험 공간분포 간의 피어슨 상관 계수를 계산하였다. 평판재하시험의 지지력과 관입 깊이 5cm, 10cm, 15cm에서의 동적 콘 관입시험의 타격횟수는 약한 양의 상관관계를 갖는 것으로 나타났다. The internal erosion due to poor compaction of the material was the main cause of collapse of the embankment in Korea. The assessment of the compaction state of the dam body was a very important check in the safety diagnosis of the embankment. In this study, the correlation between dynamic cone penetration test and plate loading test which is the most typical compaction evaluation technique was analyzed to verify the applicability of the dynamic cone penetration test in evaluating the compaction state of the dam body. The standard penetration tests were carried out six times to define soil properties and depth of the test site. The spatial distributions were obtained by the Kriging method after 15 times of plate loading tests and 47 times of dynamic cone penetration tests. The Pearson correlation coefficient between the spatial distribution of the plate loading test and the dynamic cone penetration test spatial distribution at the constant penetration depth was calculated. The load distribution in the plate loading test and the blow counts at penetration depths of 5 cm, 10 cm and 15 cm in the dynamic cone penetration test showed a weak positive correlation.

      • KCI등재

        현장재하시험을 통한 강관 매입말뚝의 지지력 안전율 제안

        박종전,정상섬,박정식 한국지반공학회 2018 한국지반공학회논문집 Vol.34 No.5

        In this study, the static and dynamic load tests were carried out to propose the safety factor of steel prebored and precast piles in weathered rocks. The axial load tests have been conducted on test piles with nominal diameters of 0.508 and 0.457 m. The piles were subject to static loading tests (14 times) and dynamic loading tests (EOID 14times, Restrike 14times). The dynamic loading tests were first executed after the casting of test piles (① initial EOID test). ②In the succeding 28 days from completion of construction, static load tests were performed and ③final restrike tests were carried out after 15 days from the static test. As a result, the bearing capacity based on Davisson method was 15% higher than that of the restrike tests. The bearing capacity of the static load tests were larger than that of the dynamic tests. By comparing the safety factor through various loading tests, the safety factor of dynamic loading tests were suggested to be lowered to 1.75 from the conventional 2.0.

      • KCI등재

        동적 초미소 경도법에 의한 심도별 대전화강암 내 광물들의 역학적 특성

        최정해(Junghae Choi),신주호(Juho Shin),장형두(Hyongdoo Jang),강성승(Seong-Seung Kang) 한국암반공학회 2017 터널과지하공간 Vol.27 No.3

        동적 초미소 경도법의 압입시험, 하중-비하중 시험, 그리고 반복시험을 이용하여 심도별 대전화강암 내 광물들의 경도와 역학적 특성을 살펴보았다. 시험 결과 세 개 구간(Group-1, -2, -3)으로 광물 집단의 분류가 가능하였다. Martens 경도값은 세 가지 시험법 모두에서 41 m와 223 m 심도에 따른 차이가 크지 않았다. 그럼에도 불구하고, 그 크기는 반복시험<하중-비하중 시험<압입시험 순으로 나타났다. 광물 집단별 평균 Martens 경도, 탄성계수, indentation work 등을 고려해 볼때, 그들의 경계는 비교적 뚜렷하게 나타났다. 결론적으로 동적 초미소경도법의 세 가지 형태 시험법을 이용함으로써 광물들에 대한 비교적 정확한 경도값을 얻을 수 있었다. 또한 하중-비하중 시험과 반복시험으로부터는 광물들의 탄성계수와 광물들의 탄성적-소성적 성질 특성 파악도 가능하였다. The hardness and mechanical properties of the minerals in the Daejeon granite according to depths were investigated by indentation test, load-unload test, and cycle test of dynamic ultra-micro hardness. As a result of the tests, it was possible to classify into three mineral groups (Group-1, -2, -3). The Martens hardness was not significantly different between 41 m and 223 m depths in three mode tests. Nevertheless, they showed in the order of a cycle test<load-unload test <indentation test. Considering the average Martens hardness, elastic modulus, and indentation work for each mineral group, their boundaries were relatively clear. In conclusion, A relatively accurate hardness of minerals can be obtained by three mode tests of dynamic ultra-micro hardness. In addtion, it was possible to characterize the elastic modulus and the elastic-plastic properties of the minerals from the load-unload and cycle tests.

      • KCI등재

        굴착 후 타입된 PHC 말뚝의 재하시험 결과 비교분석 사례 연구

        김재홍(Jaehong Kim),여규권(Geuguwen Yea) 한국지반환경공학회 2013 한국지반환경공학회논문집 Vol.14 No.11

        서해안 연약지반에서 굴착 후 시멘트밀크의 주입없이 경타로 시공된 PHC 말뚝에 대하여 동재하시험과 정재하시험을 병행하여 그 상관성을 분석하였다. 초기 동재하시험은 Hydraulic Hammer(Ram Weight 7.0tf)를 사용하여 낙하고 0.8m에서 최종 평균관입량은 3.0~8.0mm로 측정되었다. 이때 CAPWAP 분석결과에 의한 최종 허용지지력은 776.4~1,053.6kN/본으로 확인되었다. 정재하시험은 동재하시험을 한 동일 말뚝에 실시하는 것이 가장 이상적이나, 현장 여건상 인접의 말뚝에 설계지지력(120.0tf)의 200%인 총 시험하중(2,400.0kN)을 8단계로 나누어 재하시험한 결과, 총침하량은 15.97~16.38mm, 잔류침하량은 4.48~5.38mm로 측정되었으며, 모든 분석법을 적용하여도 항복하중과 극한하중은 확인되지 않았다. 따라서 최대시험하중(240.0tf)을 항복하중으로 간주하여 안전율 2.0으로 나누어 허용지지력을 산정한 결과 허용지지력은 1,200kN/본 이상 되는 것으로 나타났다. 그 결과 정재하시험보다 동재하시험이 1.54~1.1.4배 큰 것으로 나타났다. In the west coastal soft ground, the static and dynamic loading tests for PHC piles which were executed using light driving without injecting cement milk were carried out and the correlation was analyzed. Initial dynamic loading test used hydraulic hammer(ram weight 70kN) and final average penetration effect presented 3.0 to 8.0mm at 0.8m drop. Then final allowable bearing capacity using CAPWAP presented 776.4 to 1,053.6kN a pile. The static loading tests which were performed at the other piles loaded 200% of the design load dividing by eight phases. As the result, total settlement was 15.97 to 16.38mm and residual settlement was 4.48 to 5.38mm, but both yielding and ultimate load can’t be estimated. Therefore, allowable bearing capacity was determined larger than 1,200kN a pile regarding maximum test load as yielding load. Thus, it showed that allowable bearing capacity of the dynamic loading test was larger than static loading test in 1.54 to 1.14 times.

      • 건설구조물의 진동제어를 위한 압착식 MR 감쇠기의 동하중 실험과 동적거동특성의 규명에 관한 연구

        허광희(Heo Gwanghee),전준용(Jeon Joonryong),이규(Lee Giu),이제훈(Lee JaeHoon),이동기(Lee Dong-gi) 한국구조물진단유지관리학회 2007 한국구조물진단학회 학술발표회논문집 Vol.11 No.1

        This paper is studied on the identification of dynamic models of squeeze mode MR damper. These models are power model and Bingham model, those are considered with conventional application of structural vibration control. Two models have advantages of reduce to data processing and analysis term from considering a little parameters and simply a numerical formula. And, dynamic loading tests for identification of dynamic parameters to dynamic models are done with various dynamic loading conditions, force-displacement hysteresis loops, force-velocity relationship curves and force-input current relationship curves are acquired from this tests. Finally, the suitability of studied two dynamic models is proved by comparing tests results and analysis results. These results verify that Power model and Bingham model are able to useful appling for build a control algorithm and semi-active control system.

      • 건설구조물의 진동제어를 위한 압착식 MR 감쇠기의 동하중 실험과 동적거동특성의 규명에 관한 연구

        허광희 ( Heo Gwanghee ),전준용 ( Jeon Joonryong ),이규 ( Lee Giu ),이제훈 ( Lee Jaehoon ),이동기 ( Lee Dong-gi ) 한국구조물진단유지관리공학회 2007 한국구조물진단유지관리공학회 학술발표대회 논문집 Vol.11 No.1

        This paper is studied on the identification of dynamic models of squeeze mode MR damper. These models are power model and Bingham model, those are considered with conventional application of structural vibration control. Two models have advantages of reduce to data processing and analysis term from considering a little parameters and simply a numerical formula. And, dynamic loading tests for identification of dynamic parameters to dynamic models are done with various dynamic loading conditions, force-displacement hysteresis loops, force-velocity relationship curves and force-input current relationship curves are acquired from this tests. Finally, the suitability of studied two dynamic models is proved by comparing tests results and analysis results. These results verify that Power model and Bingham model are able to useful appling for build a control algorithm and semi-active control system.

      • KCI등재후보

        H-pile의 지지력 특성 및 동역학적 공식의 신뢰도 평가

        오세욱,이준대 한국산업안전학회 2003 한국안전학회지 Vol.18 No.1

        Recently, pile foundations were constructed in rough or soft ground than ground of well condition thus it is important that prediction of ultimate bearing capacity and calculation of proper safety factor applied pile foundation design. This study were performed to dynamic loading tests for the thirty two piles at four different construction sites and selected pile at three site were performed to static loading tests and then compare with measured value and value of static and dynamic loading tests. The load-settlement curve from the dynamic loading tests by CAPWAP was very similar to the results obtained from the static load tests. Based on dynamic and static loading tests, the reliability of pile-driving formula were analyzed and then suggested with proper safety factor for prediction of allowable bearing capacity in this paper.

      • KCI등재

        순환골재 혼입비율에 따른 재활용 가열 아스팔트 혼합물의 공용성능 평가연구

        전진호,황성도,문성호 한국도로학회 2019 한국도로학회논문집 Vol.21 No.3

        PURPOSES : The use of reclaimed aggregate has been recently increasing with the increase in the amount of waste asphalt concrete. The application of these materials can reduce the properties of the asphalt pavement when compared with the case when recycled aggregate is not used. The objective of this study is to evaluate the performance of the asphalt mixtures with various mix ratios of reclaimed aggregate. METHODS : To measure the performance, the following tests using the mixtures prepared in accordance with the Korea Standards were conducted: Hamburg wheel-tracking test, third-scale model mobile loading simulator test, and dynamic modulus test. RESULTS : The test results of the Hamburg wheel-tracking test indicate that the water resistance was similar in each mixture and the plastic deformation resistance was good in the high-ratio reclaimed aggregate mixture. In the case of the third-scale model mobile loading simulator test, the plastic deformation demonstrated a high resistance in the high-ratio reclaimed aggregate mixture. The results were similar to those of the Hamburg wheel-tracking test; however, the cracking resistance was poor with a high recycled aggregate incorporation ratio. The dynamic modulus test results demonstrated excellent resistance to plastic deformation at a relatively high ratio of reclaimed aggregate admixture. The crack resistance was weakened when a high ratio of reclaimed aggregate mixture was used. CONCLUSIONS: As the reclaimed aggregate content increased, the plastic deformation resistance increased and the crack resistance decreased.

      • KCI등재

        주행 열차의 정적 및 동적 재하시험 계측 데이터를 이용한 트러스 철도 교량의 주기적 거동 분석

        김진모,김건우,김시형,김도형,김두기 한국구조물진단유지관리공학회 2023 한국구조물진단유지관리공학회 논문집 Vol.27 No.6

        본 연구는 기존의 재하시험에 의한 계측 결과와 시험 열차 및 상시주행 열차 간의 결과 비교를 통해 주행 열차에 의한 재하시험을 검증하였다. 또한 계측된 자료로부터 정적,․동적 거동 특성을 추출하여 평가를 진행하여 재하시험의 신뢰성 검증을 위해 기존 계측자료와 열차속도, 노선 간 응답 비교, 경향분석, 충격계수 선정 및 고유진동수 분석을 통해 타당성을 입증하였다. 이를 위해 동호철교를 대상지로 적용하였으며 제안 방법의 적용성을 검증하였다. 상시 운행 열차 10대와 시험 열차를 이용하여 교량에 44개의 센서를 부착하고 재하시험 경간에 대한 변형률, 처짐 등을 계측하여 이론치와 비교분석 하였다. 분석 결과 하중의 대칭성 및 중첩성은 양호하며 정적 동적 재하시험 결과에 대한 비교 또한 양호한 것으로 나타났다. 충격계수 분석 결과 최대 실측 충격계수(0.092)가 이론충격계수(0.327)보다 작은 것으로 분석되어, 활하중에 의한충격 영향은 양호한 것으로 판단된다. 실측 고유진동수는 최저 2.393Hz로 해석 값 2.415Hz와 비교 시 근사하게 평가되었다. 위 결과를 바탕으로 본 논문에서는 내하력 평가 시 열차의 통행 차단이 필요하지 않고, 기존의 처짐 및 응답 계측보다 계측이 용이하도록 트러스 교량구조의 응답 결과를 도출하였다. 주행 열차의 재하시험을 통해 트러스 철도 교량의 변형률 및 처짐을 측정하고 정적, 동적 거동 특성을 파악하여 응력보정을 위한 응답비 및 동적 강성을 평가할 수 있음을 보였다. To evaluate the vertical loads on railway bridges, conventional load tests are typically conducted. However, these tests often entail significant costs and procedural challenges. Railway conditions involve nearly identical load profiles due to standardized rail systems, which may appear straightforward in terms of load conditions. Nevertheless, this study aims to validate load tests conducted under operational train conditions by comparing the results with those obtained from conventional load tests. Additionally, static and dynamic structural behaviors are extracted from the measurement data for evaluation. To ensure the reliability of load testing, this research demonstrates feasibility through comparisons of existing measurement data with sensor attachment locations, train speeds, responses between different rail lines, tendency analysis, selection of impact coefficients, and analysis of natural frequencies. This study applies to the Dongho Railway Bridge and verifies the applicability of the proposed method. Ten operational trains and 44 sensors were deployed on the bridge to measure deformations and deflections during load test intervals, which were then compared with theoretical values. The analysis results indicate good symmetry and overlap of loads, as well as a favorable comparison between static and dynamic load test results. The maximum measured impact coefficient (0.092) was found to be lower than the theoretical impact coefficient (0.327), and the impact influence from live loads was deemed acceptable. The measured natural frequencies approximated the theoretical values, with an average of 2.393Hz compared to the calculated value of 2.415Hz. Based on these results, this paper demonstrates that for evaluating vertical loads, it is possible to measure deformations and deflections of truss railway bridges through load tests under operational train conditions without traffic control, enabling the calculation of response factors for stress adjustments.

      • SCOPUSSCIEKCI등재

        Effect of Device Rigidity and Physiological Loading on Spinal Kinematics after Dynamic Stabilization : An In-Vitro Biomechanical Study

        Chun, Kwonsoo,Yang, Inchul,Kim, Namhoon,Cho, Dosang The Korean Neurosurgical Society 2015 Journal of Korean neurosurgical society Vol.58 No.5

        Objective : To investigate the effects of posterior implant rigidity on spinal kinematics at adjacent levels by utilizing a cadaveric spine model with simulated physiological loading. Methods : Five human lumbar spinal specimens (L3 to S1) were obtained and checked for abnormalities. The fresh specimens were stripped of muscle tissue, with care taken to preserve the spinal ligaments and facet joints. Pedicle screws were implanted in the L4 and L5 vertebrae of each specimen. Specimens were tested under 0 N and 400 N axial loading. Five different posterior rods of various elastic moduli (intact, rubber, low-density polyethylene, aluminum, and titanium) were tested. Segmental range of motion (ROM), center of rotation (COR) and intervertebral disc pressure were investigated. Results : As the rigidity of the posterior rods increased, both the segmental ROM and disc pressure at L4-5 decreased, while those values increased at adjacent levels. Implant stiffness saturation was evident, as the ROM and disc pressure were only marginally increased beyond an implant stiffness of aluminum. Since the disc pressures of adjacent levels were increased by the axial loading, it was shown that the rigidity of the implants influenced the load sharing between the implant and the spinal column. The segmental CORs at the adjacent disc levels translated anteriorly and inferiorly as rigidity of the device increased. Conclusion : These biomechanical findings indicate that the rigidity of the dynamic stabilization implant and physiological loading play significant roles on spinal kinematics at adjacent disc levels, and will aid in further device development.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼