http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
김시중 국토지리학회 2009 국토지리학회지 Vol.43 No.3
This study aimed to examine the Image positionings of the image similarity of spa destinations, the levels of spa attribute recognition, and the levels of spa destination preference by investigating 6 spa resorts in Chunchung province (Yuseong, Onyang, Dogo, Suanbo, Asan, and Ducksan). The multidimensional scaling method was conducted to analyze the data and the findings were as belows: 1. the image similarity analysis showed that there existed similar images between Suanbo and Ducksan, between Dogo and Onyang, and between Yuseong and Asan respectively. 2. as results of the levels of attribute recognition analysis, as to the attributes of Yuseong and Onyang, “spa and supporting facilities” and “surrounding conditions” showed high competitive levels, but the competitive levels of “spa fee” and “friendship and the intention of recommendation” were ranked low. “Spa water” was lowest in both Asan and Ducksan. “Spa fee”was highest in Ducksan, but lowest in Onyang and Ducksan. 3, as results of spa preference analysis, Yusoen and Onyang were most preferred by “packaged travel” and “membership training” while Suanbo was most preferred by “Family” and “Travel community”. “Individual” and “group” preferred Suanbo, Yuseong, and Onyang in order. 본 연구는 충청지역 온천관광지 6곳(유성, 온양, 도고, 수안보, 아산, 덕산)을 선정하여 온천관광지의 이미지 유사성, 속성 인식도 및 온천관광지 선호도 등의 이미지 포지셔닝 분석을 수행함에 목적이 있었다. 설문조사 자료를 토대로 다차원 척도법에 의하여 분석이 수행되었으며, 분석결과는 다음과 같다. 첫째, 온천관광지의 이미지 유사성 분석 결과, 수안보와 덕산, 도고와 온양 그리고 유성과 아산은 온천관광지간에 이미지가 가장 유사한 것으로 나타났다. 둘째, 온천관광지 속성 인식도 분석 결과, 유성과 온양은 “온천 및 부대시설”과 “온천관광지 주변여건”의 속성에서 경쟁력이 높으나, “온천비용” 및 “친절·추천의사”의 속성은 상대적으로 경쟁력이 낮게 나타났다. “온천수” 속성은 아산과 덕산의 경쟁력이 가장 낮으며, 다른 온천의 경쟁력은 비슷한 수준으로 나타났다. “온천비용” 측면에서는 덕산의 경쟁력이 가장 높으며, 온양과 아산은 가장 경쟁력이 떨어지는 것으로 파악되었다. 셋째, 관광형태별 온천관광지 선호도분석 결과, “패키지” 및 “연수” 관광객들은 유성 및 온양의 순위로 선호도가 높았다. 수안보는 “가족” 및 “여행모임” 관광객들이 가장 선호하고 있으며, 그 뒤를 이어 도고 그리고 덕산인 것으로 나타났다. 한편, “개별”과 “단체”는 수안보와 유성 그리고 온양이 순위로 선호도가 높은 것으로 파악되었다.
충청지역 온천관광지 이미지 유사성 및 선택요인 인식도 분석
김시중(Kim, Si Joong) 한국지역지리학회 2015 한국지역지리학회지 Vol.21 No.3
본 연구는 충청지역 6개 온천관광지(유성, 온양, 도고, 수안보, 아산, 덕산)를 대상으로 이미지 유사성 및 선택요인 인식도를 다차원척도법을 활용하여 분석함에 목적이 있었다. 실증분석 결과는 다음과 같다. 첫째, 온천관광지의 이미지 유사성 분석 결과, “아산과 온양” 그리고 “수안보와 덕산”이 각각 다른 유사한 이미지 그룹을 형성하고 있다. 그러나 유성은 다른 온천관광지와 다른 이미지를 갖고 있다. 둘째, 온천관광지 선택요인 인식도 분석 결과, 선택요인 ‘온천시설’, ‘이용비용 및 ’서비스질‘은 분석대상 6개 온천에서 인식도에서는 큰 차이가 없으나, ’온천명소‘는 온양, 유 성, 덕산 및 수안보 온천에서 선택요인 반영도가 높으나 아산과 도고는 반영도가 낮게 나타났다. 선택요인 ’관광명소 ‘는 온양, 유성 및 도고 지역의 속성 반영도가 높으나 아산은 낮은 것으로 분석되었다. This study deals with six spa touristy places to analyze the similarity in image and selection factor recognition through multidimensional scaling method. The result is as following. First, as a result of analysis in the similarity in Image of the 6 touristy Spa places, each “Asan and Onyang” and “Suanbo and Ducksan” form different similar image groups. However, Yoosung does not share the similarity in Image that other Spa places own. Second, as a result of analysis of selection factors in the six touristy spa places, it is found out that there is no big difference in selection factors such as ‘spa facility’, ‘a fee to use’, and ‘quality of service’ in the six spa places. Yet, Onyang, Yoosung, Ducksan, and Suanbo spa reflect high selection factor as ‘a recognized spa place’ different from Asan and Dogo where the reflection of selection factor is low. Onyang, Yoosung, and Dogo regions reflect high selection factor as a ‘Touristy destination’ while Asan reflects low selection factor.
觀光地의 情緖的 이미지 尺度 開發 :純情緖的 이미지와 準情緖的 이미지
박석희,고동우 한국관광학회 2002 관광학연구 Vol.25 No.4
This study develops two kinds of scales measuring the affectional image that the tourists might have on a destination. The two types of affectional images for a destination were suggested in different level from the both of cognitive image and overall image. The two scales have been constructed and examined for the validity through the whole procedure of the collecting, selecting and analyzing the items. The results reveal that the two scales have the reliability and the validity as the measurements of tourist's image. Finally utility and academic values of the suggested image concepts and the matched scales were discussed in terms of tourism image study.
김용기(Young-Gi Kim),박석희(Suk-Hee Park) 한국농어촌관광학회 2011 농어촌관광연구 Vol.18 No.2
The purpose of this study is to develop the scale for rural tourism village image by measuring consumption behavior patterns of the tourists who come to visit rural tourism villages. And to verify usability of the developed scale by applying this scale in the rural tourism-village of rural tourism satisfaction and by measuring the degree to which tourists come to the same village for a revisit. This study is largely classified into two parts; first, the development of the scale and second, the direct application of the developed scale to measure rural tourism village image. The first part consisted of researching previous studies on the tourism destination image and the image of rural tourism-village, and developing the scale based on the analysis of collected data on actual rural tourists’s consumption.
徐採演(Seo Chae-Yeon),文權洙,成水鍊,朴濟辰 대한국토·도시계획학회 1999 國土計劃 Vol.34 No.3
In the tourism industry, it is expected to contribute to the development of tourist attractions. For the reason, it is necessary that the ways to improve the tourist facilities and tourist resources and to attractive tour group should be explored. The problems about the accessibility to the tourist attractions and expedience of tour group during sightseeing tour, are raised as the most important factors to attract tourists. This study sampled 8 main tourist attractions located around Mt. Mudung as subject. This study evaluated the property of the image of each subject, estimated mean value of final tourist destination with the classified items, and analyzed the preference of tourists through the individual behavior model by making use of data investigating the characteristics or preference of tour group on the basis of the way the tourists decide the sightseeing region. After the properties of the 8 sightseeing regions were compared with their individual property, the values of the properties reconstructed in terms of the highest value to evaluate the representative image of the tourist attractions. The factors to affect the decision of tourist attractions could be investigated by means of statistical analysis and thereby the variable used in modeling could be set. The established tourist attractions decision model could achieve compatibility and explain the touring behavior of tourist.