RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

        Sun, Yanguo,Li, Mingshui,Liao, Haili Techno-Press 2013 Wind and Structures, An International Journal (WAS Vol.17 No.6

        Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan's semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.

      • KCI등재

        Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

        Yanguo Sun,Mingshui Li,Haili Liao 한국풍공학회 2013 Wind and Structures, An International Journal (WAS Vol.17 No.6

        Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan’s semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.

      • KCI등재

        Vortex-Induced Vibration Optimization of a Wide Streamline Box Girder by Wind Tunnel Test

        Ming Li,Yanguo Sun,Hongmiao Jing,Mingshui Li 대한토목학회 2018 KSCE JOURNAL OF CIVIL ENGINEERING Vol.22 No.12

        Although the streamline box girder exhibits an excellent aerodynamic performance, they are often suffer severe Vortex-Induced Vibrations (VIVs) due to complicated separation and reattachment of air flows. It is necessary to apply control measures on the streamline box girder to suppress VIV. In this study, the VIV optimizations of a super wide streamline box girder were conducted via a series of section model wind tunnel tests. The effects of wind fairings, inspection vehicle rails, guide vanes, traffic barriers and handrails on the heaving VIV performance of the wide streamline box girder were analyzed. The test results show that the inspection vehicle rail and handrail are the main members to induce the heaving VIV of the box girder. A sharper wind fairing without changing the distance of railings is favorable to the heaving VIV performance. However, the countermeasures of changing the position of inspection vehicle rail and installing guide vanes under the girder have slight influences on reducing heaving VIV responses. Inspired by the spanwise sinusoidal perturbation method, the traffic barriers sealed with plates by regular intervals along the bridge deck can suppress the heaving VIV of the box girder successfully. The porosity of handrails has a significant effect on the heaving VIV. By using a sharp wind fairing and circular simplified handrails, the VIV performance of the wide streamline box girder was greatly improved. Their mitigation abilities were verified by a large-scale section model wind tunnel test.

      • Spatial correlation of aerodynamic forces on 5:1 rectangular cylinder in different VIV stages

        Yongfu Lei,Yanguo Sun,Tianyi Zhang,Xiongwei Yang,Ming-shui Li 한국풍공학회 2022 Wind and Structures, An International Journal (WAS Vol.34 No.1

        To better understand the vortex-induced vibration (VIV) characteristics of a 5:1 rectangular cylinder, the distribution of aerodynamic force and the non-dimensional power spectral density (PSD) of fluctuating pressure on the side surface were studied in different VIV development stages, and their differences in the stationary state and vibration stages were analyzed. The spanwise and streamwise correlations of surface pressures were studied, and the flow field structure partitions on the side surface were defined based on the streamwise correlation analysis. The results show that the variation tendencies of mean and root mean square (RMS) pressure coefficients are similar in different VIV development stages. The RMS values during amplitude growth are larger than those at peak amplitude, and the smallest RMS values are observed in the stationary state. The spanwise correlation coefficients of aerodynamic lifts increase with increase of the peak amplitude. However, for the lock-in region, the maximum spanwise correlation coefficient for aerodynamic lifts occurs in the VIV rising stage rather than in the peak amplitude stage, probably due to the interaction of vortex shedding force (VSF) and self-excited force (SEF). The streamwise correlation results show that the demarcation point positions between the recirculation region and the main vortex region remain almost constant in different VIV development stages, and the reattachment points gradually move to the tailing edge with increasing amplitude. This study provides a reference to estimate the demarcation point and reattachment point positions through streamwise correlation and phase angle analysis from wind tunnel tests.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼