RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

        Yu, Ning,Yu, Zeng,Gu, Feng,Li, Tianrui,Tian, Xinmin,Pan, Yi Korea Information Processing Society 2017 Journal of information processing systems Vol.13 No.2

        Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.

      • KCI등재

        Deep Learning in Genomic and Medical Image Data Analysis: Challenges and Approaches

        ( Ning Yu ),( Zeng Yu ),( Feng Gu ),( Tianrui Li ),( Xinmin Tian ),( Yi Pan ) 한국정보처리학회 2017 Journal of information processing systems Vol.13 No.2

        Artificial intelligence, especially deep learning technology, is penetrating the majority of research areas, including the field of bioinformatics. However, deep learning has some limitations, such as the complexity of parameter tuning, architecture design, and so forth. In this study, we analyze these issues and challenges in regards to its applications in bioinformatics, particularly genomic analysis and medical image analytics, and give the corresponding approaches and solutions. Although these solutions are mostly rule of thumb, they can effectively handle the issues connected to training learning machines. As such, we explore the tendency of deep learning technology by examining several directions, such as automation, scalability, individuality, mobility, integration, and intelligence warehousing.

      • KCI등재

        Intra-articular Injection of Chitosan-Based Supramolecular Hydrogel for Osteoarthritis Treatment

        Mou Donggang,Yu Qunying,Zhang Jimei,Zhou Jianping,Li Xinmin,Zhuang Weiyi,Yang Xuming 한국조직공학과 재생의학회 2021 조직공학과 재생의학 Vol.18 No.1

        Background: Pain and cartilage destruction caused by osteoarthritis (OA) is a major challenge in clinical treatment. Traditional intra-articular injection of hyaluronic acid (HA) can relieve the disease, but limited by the difficulty of long-term maintenance of efficacy. Methods: In this study, an injectable and self-healing hydrogel was synthesized by in situ crosslinking of N-carboxyethyl chitosan (N-chitosan), adipic acid dihydrazide (ADH), and hyaluronic acid–aldehyde (HA-ALD). Results: This supramolecular hydrogel sustains good biocompatibility for chondrocytes. Intra-articular injection of this novel hydrogel can significantly alleviate the local inflammation microenvironment in knee joints, through inhibiting the inflammatory cytokines (such as TNF-α, IL-1β, IL-6 and IL-17) in the synovial fluid and cartilage at 2- and even 12-weeks post-injection. Histological and behavioral test indicated that hydrogel injection protected cartilage destruction and relieved pain in OA rats, in comparison to HA injection. Conclusion: This kind of novel hydrogel, which is superior to the traditional HA injection, reveals a great potential for the treatment of OA. Background: Pain and cartilage destruction caused by osteoarthritis (OA) is a major challenge in clinical treatment. Traditional intra-articular injection of hyaluronic acid (HA) can relieve the disease, but limited by the difficulty of long-term maintenance of efficacy. Methods: In this study, an injectable and self-healing hydrogel was synthesized by in situ crosslinking of N-carboxyethyl chitosan (N-chitosan), adipic acid dihydrazide (ADH), and hyaluronic acid–aldehyde (HA-ALD). Results: This supramolecular hydrogel sustains good biocompatibility for chondrocytes. Intra-articular injection of this novel hydrogel can significantly alleviate the local inflammation microenvironment in knee joints, through inhibiting the inflammatory cytokines (such as TNF-α, IL-1β, IL-6 and IL-17) in the synovial fluid and cartilage at 2- and even 12-weeks post-injection. Histological and behavioral test indicated that hydrogel injection protected cartilage destruction and relieved pain in OA rats, in comparison to HA injection. Conclusion: This kind of novel hydrogel, which is superior to the traditional HA injection, reveals a great potential for the treatment of OA.

      • SCISCIESCOPUSKCI등재

        Synthesis and luminescence properties of a La2W3O12:Eu3+ phosphor for near-UV white LEDs

        Meng, Fangui,Zhang, Xinmin,Yu, Young Moon,Kim, Sun Il,Seo, Hyo Jin Korean Physical Society 2014 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.64 No.1

        Eu3+-activated La2W3O12 phosphors have been synthesized by using the traditional solid-state reaction. X-ray diffraction, photoluminescence (PL) spectra at room temperature and high temperature, and luminescence decay kinetics have been used to characterize the synthesized samples. For the PL emission spectra, the electric dipole transition (5) D (0)-(7) F (2) of Eu3+ is the dominant one. The chromaticity coordinate is (0.665, 0.334), which is close to the National Television Standard Committee standard value for red phosphor (x = 0.67, y = 0.33). For the excitation spectrum, the La2W3O12:Eu3+ phosphor shows an intense absorption near 400 nm, which is available for near-UV-excited white LEDs. An analysis based on the Inokuti-Hirayama model shows that the interaction between Eu3+ ions occurs via a dipole-quadrupole type interaction.

      • Design and Analysis of a Wideband 15–35-GHz Quadrature Phase Shifter With Inductive Loading

        Sah, Suman P.,Xinmin Yu,Deukhyoun Heo IEEE 2013 IEEE transactions on microwave theory and techniqu Vol.61 No.8

        <P>A Ku-, K-, and Ka-band phase shifter for beamforming applications is presented in this paper. An analysis showing the effect of loading conditions on quadrature phase accuracy in a simple poly-phase filter is carried out. Based on the analysis, a novel quadrature phase shifter (QPS) with inductive load is proposed. Sign-selection and vector addition is performed in two stages to lower supply voltage. The proposed phase shifter is fabricated in a 0.18- μm SiGe BiCMOS process and occupies an area of 520 μm×370 μm. The proposed QPS has a maximum phase error of 6.38<SUP>°</SUP> over 15-35 GHz while maintaining an amplitude imbalance less than 2 dB. When combined into a 4-bit phase shifter, the root mean square (rms) gain error is less than 2.2 dB and the rms phase error is less than 13<SUP>°</SUP> over 15-35 GHz. The phase shifter thus achieves a full 360<SUP>°</SUP> phase-shift range with 22.5 <SUP>°</SUP> phase resolution. The total power consumption is 14 mA from a 1.8-V power supply. The phase shifter achieves an input P1dB of -6.25 dBm. The measured phase-shifting fractional bandwidth of 87% is the highest reported thus far in the literature for SiGe BiCMOS implementation.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼