RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        A Range-Based Localization Algorithm for Wireless Sensor Networks

        Zhang Yuan,Wu Wenwu,Chen Yuehui The Korea Institute of Information and Commucation 2005 Journal of communications and networks Vol.7 No.4

        Sensor localization has become an essential requirement for realistic applications over wireless sensor networks (WSN). In this paper we propose an ad hoc localization algorithm that is infrastructure-free, anchor-free, and computationally efficient with reduced communication. A novel combination of distance and direction estimation technique is introduced to detect and estimate ranges between neighbors. Using this information we construct unidirectional coordinate systems to avoid the reflection ambiguity. We then compute node positions using a transformation matrix [T], which reduces the computational complexity of the localization algorithm while computing positions relative to the fixed coordinate system. Simulation results have shown that at a node degree of 9 we get $90\%$ localization with $20\%$ average localization error without using any error refining schemes.

      • KCI등재

        Repair Decision Based on Sensitivity Analysis for Aero-Engine Assembly

        Yanhui Sun,Junkang Guo,Jun Hong,Guanghui Liu,Wenwu Wu,Cong Yue 한국정밀공학회 2019 International Journal of Precision Engineering and Vol.20 No.3

        Strict requirements for concentricity of the multistage high pressure rotor of an aero-engine are employed to guarantee performances such as vibration. Tedious and time-wasting trial assembly by adjusting the installation angles of stages is needed to meet the requirements due to the lack of effective analysis methods. Furthermore, there is no quick way to find out where the problem is and how to repair the parts when the installation-angle-adjusting method fails. This article focuses on a solution to optimize the installation angle of each stage and to make repair decisions in the assembly process. The run-out data are processed by least square method to get the spatial positions and attitudes of flanges and a deviation propagation analysis model is built by virtue of homogeneous coordinate transformation theory to predict the accumulative errors of each stage. The eccentricities of stages are evaluated with reference to the common axis and the installation angles of stages are optimized by minimizing the sum of eccentricities. Sensitivities of eccentricity, eccentric angle and parallelism of each stage are analyzed and repair decisions for parts are made to meet more strict requirements. An example of a three-stage subassembly is presented to demonstrate the solution.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼