RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        西南海岸地域의 地形發達에 미친 地質條件

        Suh Woon Kim(金瑞雲) 대한자원환경지질학회 1971 자원환경지질 Vol.4 No.1

        The geotectonics and geomorphic structure of Korea resulted from the Song-rim Disturbance and the Daebo orogenic movements. Afterward this mountainous peninsula underwent several geological changes on a small scale, and it was also claimed that the steady rising of the elevated peneplain of the eastern coast and the submerging of the southwestern coastal area are largely due to the tilted block movement. These views have been generally accepted good in several ways, but they are limited in range or lacking in theoretical integration. The present writer investigated the geology of the Mt. Chi-ri-san and the Honam coal mining area for a geological map in 1965, respectively. The results of these studies convinced the present writer that the conventional views, which were based upon a theory of lateral pressure should be reconsidered in many respects, and more recent studies made it clear that the morphological development in the southwestern area can be better explained by the orogenic movement and rock control. The measurement of submerging speed of the western coastal area (Pak. Y. A., 1969) and a new account on the geology and tectonics of the Mid-central region of South Korea (Kim O.J., 1970) act as an encouragement to a new explanation. The present writer’s researches on the extreme southwestern portion of the peninsula show that the steady submerging of this area cannot be attributed to a simple downthrown block phenomenon caused by block movement. It is no more than the result of the differential movement of uplifting in the eastern and western coastal areas and the rising of sea-level in the post-glacial period. This phenomenon could be easily explained by the comparison of the rate of rise in sea-level and amount of heat flow between Korea and other areas in the world. The existance of the erosional planes in the Sobaik-San ranges also provide an evidence of an upheaval in the western coast area. Though the Sobaik-San ranges largely follow the direction of the Sinian system. They consist of the numerous branches, whose trends run more or less differently from their main trend because of the disharmonic folding, are converged into Mt. Sobaik-San and Chupungryung. The undulation of the land is not wholely caused by orogenic movements, where as the present writer confirmed that the diversity of morphological development is the direct reflection of geological conditions such as rocks and processes which constitute the basic elements of geomorphic structure. An east-west directed mountain range which could be named as Hansan mountain range, was claimed to be oriented by the joint control. The geological conditions such as a special erosion and weathering of agglomerate and breccia tuff usually produce pot-hole like submarine features which cause the whirling phenomenon at the southwestern coast channel.

      • SCOPUSKCI등재
      • KCI등재

        서남해안지역(西南海岸地域)의 지형발달(地形發達)에 미친 지질조건(地質條件)

        서운,Kim, Suh Woon 대한자원환경지질학회 1971 자원환경지질 Vol.4 No.1

        The geotectonics and geomorphic structure of Korea resulted from the Song-rim Disturbance and the Daebo orogenic movements. Afterward this mountainous peninsula underwent several geological changes on a small scale, and it was also claimed that the steady rising of the elevated peneplain of the eastern coast and the submerging of the southwestern coastal area are largely due to the tilted block movement. These views have been generally accepted good in several ways, but they are limited in range or lacking in theoretical integration. The present writer investigated the geology of the Mt. Chi-ri-san and the Honam coal mining area for a geological map in 1965, respectively. The results of these studies convinced the present writer that the conventional views, which were based upon a theory of lateral pressure should be reconsidered in many respects, and more recent studies made it clear that the morphological development in the southwestern area can be better explained by the orogenic movement and rock control. The measurement of submerging speed of the western coastal area (Pak. Y. A., 1969) and a new account on the geology and tectonics of the Mid-central region of South Korea (Kim O.J., 1970) act as an encouragement to a new explanation. The present writer's researches on the extreme southwestern portion of the peninsula show that the steady submerging of this area cannot be attributed to a simple downthrown block phenomenon caused by block movement. It is no more than the result of the differential movement of uplifting in the eastern and western coastal areas and the rising of sea-level in the post-glacial period. This phenomenon could be easily explained by the comparison of the rate of rise in sea-level and amount of heat flow between Korea and other areas in the world. The existance of the erosional planes in the Sobaik-San ranges also provide an evidence of an upheaval in the western coast area. Though the Sobaik-San ranges largely follow the direction of the Sinian system. They consist of the numerous branches, whose trends run more or less differently from their main trend because of the disharmonic folding, are converged into Mt. Sobaik-San and Chupungryung. The undulation of the land is not wholely caused by orogenic movements, where as the present writer confirmed that the diversity of morphological development is the direct reflection of geological conditions such as rocks and processes which constitute the basic elements of geomorphic structure. An east-west directed mountain range which could be named as Hansan mountain range, was claimed to be oriented by the joint control. The geological conditions such as a special erosion and weathering of agglomerate and breccia tuff usually produce pot-hole like submarine features which cause the whirling phenomenon at the southwestern coast channel.

      • KCI등재

        Recent Tectonism in the Korean Peninsula and Sea Floor Spreading

        박병권,서운,Park, Byong Kwon,Kim, Suh Woon The Korean Society of Economic and Environmental G 1971 자원환경지질 Vol.4 No.1

        한반도(韓半島)는 지형운동(地穀運動)이 없이 안정(安定)한 상태(狀態)에 있는 아시아대륙(大陸)과, 지형운동(地鼓運勤)이 활발(活廢)한 일본열도(日本列鳥)의 사이에 위치(位置)하고 있다. 한반도(韓半島)는 비재적(比載的) 좁은 동서폭(東西幅)을 가지고 있는데도 불구(不拘)하고, 동해안(東海岸)은 융기(隆起), 서해안(西海岸)은 침강현상(沈降現象)을 보여 주고 있다. 그러나 서해안(西海岸)의 침강율(沈降率)을, 지형운동(地鼓運勤)이 거의 없이 안정(安定)한 상태(狀態)의 북미(北美) 동해안(東海岸)의 침강율(沈降率)과 비교(比較)해 보면 한반도(韓半島)의 서해안(西海岸)은 동해안(東海岸)과 함께 서서(徐徐)히, 융기(隆起) 하되, 다만 시차적(示差的) 융기현상(陸起現象)을 보이는 듯 하다. 이러한 융기현상(陸起現象)은 동해안(東海岸)(일본해(日本海))을 따라 전개(展開)하는 현상(現象)이다. 태평양(太平洋) mantle convection이 일본해구(日本海溝)를 따라 아세아대륙(大陸)으로 plunge 하는 데서 발생(發生)하는 압축응력(壓縮應力)에 기인(基因)하고 있을 것 같다. 또한 이러한 strain은 동해(東海) 일대(一帶)의 높은 heat flow에 의(依)해서 가속(加速)될 것 같다. 이와 같이 근세(近世) 한반도(韓半島)의 지형운동(地穀運動)을 해저확장설(海底擴張說) (Sea Floor Spreading Theory)로서 설명(說明)할 수가 있으며, 휴화산(休火山)인 백두산(白頭山)과 한라산(漢筆山)을 한반도(韓半島)가 서진(西進)한 증거(證據)로 간주(看做)할 수도 있다. The Korean Peninsula is located between the tectonically stable Asian Continent and the tectonically active Japanese islands. The east coast of Korea shows evidence of uplift whereas the west coast shows evidence of submergence. However, radiocarbon dates indicate that the rate of submergence of the west coast of Korea is slower than the tectonically stable east coast of North America. Therefore, both east and west coasts of Korea might have been uplifted during the last post-glacial period. This uplift may result the spreading line of the from compressional strain produced along East Sea of Korea (Japan Sea) and/or the conversion hinge line of the Pacific mantle convection current plunging beneath the Asian continent. This downturn is supposed to be located in the Japan Trench. High heat flow near the east coast of Korea produces the differential strain. This strain accelerates the compressional strain of the peninsula. The Sea Floor Spreading Theory can explain the tectonism of the Korean Peninsula in Recent time. Baek-Doo Mt. and Han-Ra Mt., dormant volcanoes, may be an evidence of westward movement of the Korean Peninsula.

      • KCI등재

        상동중석광상(上東重石鑛床)의 현미경적(顯微鏡的) 연구(硏究)

        이대성,서운,Lee, Dai Sung,Kim, Suh-Woon 대한자원환경지질학회 1969 자원환경지질 Vol.2 No.1

        In the Sangdong Mine area, Taebaegsan series (Pre-Cambrian) and Chosun System (Cambro-ordovician) are widely distributed. The Chosun System consists of Yangdug Series (Jangsan Quartzite and Myobong Slate) and The Great Limestone Series (Pungchon Limestone, Shesong Shale, Hwajeol Formation and Dongjeom Quartzite). The mineralized zone containing the main ore body of the Sangdong Mine was developed in the Myobong Slate formation. The result of the field and microscopic study on the mineral paragenesis and it's wall rock alteration in the tungsten ore deposit shows the following features. The orogenic movements of the Post-Chosun System in the Hambaeg Geosyncline are closely related to the tungsten ore deposition in the area, the ore minerals are composed mainly of scheelite, powelite molybdenite and sulfide minerals, and gangue minerals are hornblende, diopside, garnet, quartz, phlogopite, tremolite, biotite, muscovite, fluorite, etc., main ore body was enriched by scheelite bearing quartz vein filling into interstices of formerly mineralized zones, and the minor faults, faults of N $60^{\circ}-70^{\circ}W$, $45^{\circ}-60^{\circ}NE$ and joints, which were formed at the end of the mineralization and the slate. Country rock of the ore body was altered into the following several zones from the outside to the inside; lowgrade recrystalline aureole, silicified sericite zone, and diopside-hornblende zone. Under the microscopic observation of 195 samples taken from throughout ore body can be classified into 10 different groups by their mineral paragenesis as shown in table 2. The garnet-diopside group is primary skarn and it shows gradational change to the groups of later stage by the successive processes of metasomatism. From the stage of quartz-bearing group, the dissemination of scheelite is seen. The crystallization of scheelite in the bed started with the quartz deposition and continued to the last stage when quartz vein intruded into the main ore body. In the field and the under ground investigation a durable limestone bed in thickeness about 20 meters and their remnants in ore body are observed and under microscope calcite remnants are recognized. Hence it is posturated that the ore material moved up through the faults, shear zones or feather cracks and was assimilated with the interbeded limestone, after that the body was affected by the successive differentiated ore solution by gradational increasing in $SiO_2$, $K_2O$ and $H_2O$. Evidently this ore deposit shows the features resulted from pyrometasomatic processes.

      • KCI등재

        포항-울산간의 점토자원의 지질과 그 물리화학적 특성에 관한 연구

        옥준,이하영,서운,수진,Kim, Ok Joon,Lee, Ha Young,Kim, Suh Woon,Kim, Soo Jin 대한자원환경지질학회 1971 자원환경지질 Vol.4 No.4

        I. Purpose and Importance of the Study The purpose of the present study is to clarify to geological, mineralogical, and physico-chemical properties of the clay minerals deposits imbedded in the Tertiary sediments in the areas between. Pohang and Ulsan along southeastern coastal region of Korea. These clays are being mined and utilized for filter and insecticide after activation or simple pulverizing, nontheless activated clays are short coming as chemical industry in Korea has been rapidly grown in recent years. In spite of such increase in clay demand, no goological investigation on clay deposits nor physico-chemical properties of the clays have been carried out up to date. Consequently activated clays produced in Korea is not only of low grade but also of shortage in supply, so that Korea has to import activated clays of better grade. The importance of the present study lies, therefore, on that guiding principle could be laid down by knowing stratigraphical horizons, of clay deposits and fundamental data of improving grade of activated clays might be derived from the results of physico-chemical examinations. II. Contents and Scope of the study The contents of the study are pinpointed down in the following two subjects: 1) General geological investigation of Tertiary formations distributed in the areas between Pohang and UIsan, and detail geological study of the bentonitic clay deposits imbedded in them. 2) To clarifty physico-chemical characteristics of the clays by means of chemical analysis, X-ray diffraction and electron microscope. The scope of the study involves the following there points: i) Regional geological investigation-This investigation has been carried out in order to find out the distribution of Tertiary sediments and exact location of clay mineral deposits in the areas between Pohang and UIsan. ii) Detail geological investigation-This has been concentrated in and around the clay deposits which. had been found out by the regional investigation. iii) Laboratory researchs include i) age determination and correlation of Tertiary sediments by paleontological study, and ii) Chemical analysis, X-ray diffraction, and electron microscopic studies on clays, samples taken from various clay deposits. III. Research Results and Suggestions 1) The geology of the area investigated is composed mainly of Janggi and Beomgokri groups of Miocene age in ascending order rested on the upper Silla system, Balkuksa granite and volcanic rocks of upper Cretaceous age as base. 2) Janggi group is composed in ascending order of Janggi conglomerate, Nultaeri rhyolitic tuff, Keumkwangdong shale, two beds of lignite-bearing formations which consist of alternation of conglomerate, sandstone and mudstone, and andesitic, rhyolitic, and basaltic tuff beds. 3) Beomgokri group is mainly composed of andesitic to rhyolitic tuff interlayered by conglomerate and tuffaceous sandstone. In the areas around boundary between North-and South Kyeongsang-do is distributed Haseori farmation which is composed of conglomerate, sandstone, mudstone and andesitic to rhyolitic tuff, and which is correlated to Eoilri formation of Janggi group. 4) Clay deposits of the area are interbedded in Eoilri, Haseori, Nultaeri tuff, Keumkwangdong shale, upper and lower horizon of the lower lignite-bearing seam, and Keumori rhyolitic tuff formations of Janggi group; and are genetically classi.fied into four categories, that is, i) those derived from volcanic ash beds(Haseori and Daeanri deposits), ii) those of secondary residual type from rhyolitic tuff beds(Seokupri deposits), iii) Clay beds above and beneath the lignite seams, (Janggi and Keumkwangdong deposits), and iv) those derived from rhyolitic tuff beds(Sangjeong and Tonghae deposits). 5) Mineral constituents of clay deposits are, according to X-ray diffraction, montmorillonite accompanied in different degree by cristobalite, plagioclase, quartz, stilbite, and halloysite in rare occasion. The clays are grouped according t

      • KCI등재

        Recent tectonism in the Korean Peninsula and sea floor spreading

        Byong Kwon Park(朴炳權),Suh Woon Kim(金瑞雲) 대한자원환경지질학회 1971 자원환경지질 Vol.4 No.1

        The Korean Peninsula is located between the tectonically stable Asian Continent and the tectonically active Japanese islands. The east coast of Korea shows evidence of uplift whereas the west coast shows evidence of submergence. However, radiocarbon dates indicate that the rate of submergence of the west coast of Korea is slower than the tectonically stable east coast of North America. Therefore, both east and west coasts of Korea might have been uplifted during the last post-glacial period. This uplift may result the spreading line of the from compressional strain produced along East Sea of Korea (Japan Sea) and/or the conversion hinge line of the Pacific mantle convection current plunging beneath the Asian continent. This downturn is supposed to be located in the Japan Trench. High heat flow near the east coast of Korea produces the differential strain. This strain accelerates the compressional strain of the peninsula. The Sea Floor Spreading Theory can explain the tectonism of the Korean Peninsula in Recent time. Baek-Doo Mt. and Han-Ra Mt., dormant volcanoes, may be an evidence of westward movement of the Korean Peninsula.

      • KCI등재

        上東重石鑛床의 顯微鏡的 硏究

        Lee Dai Sung(李大聲),Kim Suh Woon(金瑞雲) 대한자원환경지질학회 1969 자원환경지질 Vol.2 No.1

        In the Sangdong Mine area, Taebaegsan series (Pre-Cambrain) and Chosun System (Cambroordovician) are widely distributed. The Chosun System consists of Yangdug Series (Jangsan Quartzite and Myobong Slate) and The Great Limestone Series (Pungchon Limestone, Shesong Shale, Hwajeol Formation and Dongjeom Quartzite). The mineralized zone containing the main ore body of the Sangdong Mine was development in the Myong Slate formation. The result of the field and microscopic study on the mineral paragenesis and it’s wall rock alteration in the tungsten ore deposit shows the following features. The orogenic movements of the Post-Chosun System in the Hambaeg Geosyncline are closely related to the tungsten ore deposition in the area, the ore minerals are composed mainly of scheelite, powelite molybdenite and sulfide minerals, and gangue minerals are horblende, diopside, garnet, quartz, phlogopite, tremolite, biotite, muscovite, fluorite, etc., main ore body was enriched by scheelite bearing quartz vein filing into interstices of formerly mineralized zones, and the minor faults, faults of N 60°-70°W, 45°-60° NE and joints, which were formed at the end of the mineralization and the slate. Country rock of the ore body was altered into the following several zones from the outside to the inside; lowgrade recrystalline aureole, silicified sericite zone, and diopside-hornblende zone. Under the microscopic observation of 195 samples taken from throughout ore body can be classified into 10 different groups by their mineral paragenesis as shown in table 2. The garnet-diopside group is primary skarn and it shows gradational change to the groups of later by the successive processes of metasomatism. From the stage of quartz-bearing group, the dissemination of scheelite is sent. The crystallization of scheelite in the bed started with the quartz deposition and continued to the last stage when quartz vein intruded into the main ore body. In the field and the under ground investigation a durable limestone bad in thickeness about 20 meters and their remnants in ore body are observed and under microscope calcite remnants are recognized. Hence it is posturated that the ore material moved up through the faults, shear zones or feather cracks and was assimilated with the interbeded limestone, after that the body was affected by the successive differentiated ore solution by gradational increasing in SiO₂. K₂O and H₂O. Evidently this ore deposit shows the features resulted from pyrometasomatic processes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼