RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Synthesis and Physicochemical Characterization of Biodegradable PLGA-based Magnetic Nanoparticles Containing Amoxicilin

        Alimohammadi, Somayeh,Salehi, Roya,Amini, Niloofar,Davaran, Soodabeh Korean Chemical Society 2012 Bulletin of the Korean Chemical Society Vol.33 No.10

        The purposes of this research were to synthesize amoxicillin-carrying magnetic nanoparticles. Magnetic nanoparticles were prepared by a chemical precipitation of ferric and ferrous chloride salts in the presence of a strong basic solution. PLGA and PLGA-PEG copolymers were prepared by ring opening polymerization of lactide (LA) and glycolide (GA) (mole ratio of LA: GA 3:1) with or without polyethylene glycol (PEG). Amoxicillin loaded magnetic PLGA and PLGA-PEG nanoparticles were prepared by an emulsion-evaporation process (o/w). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the magnetic nanoparticles have the mean diameter within the range of 65-260 nm also they were almost spherical in shape. Magnetic nanoparticles prepared with PLGA showed more efficient entrapment (90%) as compared with PLGA-PEG (48-52%) nanoparticles. In-vitro release of amoxicillin from magnetic PLGA nanoparticles showed that 78% of drug was released over 24 hours. The amount of amoxicillin released from PLGA-PEG s was higher than PLGA.

      • KCI등재

        Synthesis and Physicochemical Characterization of Biodegradable PLGA-based Magnetic Nanoparticles Containing Amoxicilin

        Somayeh Alimohammadi,Roya Salehi, Niloofar Amini,Soodabeh Davaran,Niloofar Amini 대한화학회 2012 Bulletin of the Korean Chemical Society Vol.33 No.10

        The purposes of this research were to synthesize amoxicillin-carrying magnetic nanoparticles. Magnetic nanoparticles were prepared by a chemical precipitation of ferric and ferrous chloride salts in the presence of a strong basic solution. PLGA and PLGA-PEG copolymers were prepared by ring opening polymerization of lactide (LA) and glycolide (GA) (mole ratio of LA: GA 3:1) with or without polyethylene glycol (PEG). Amoxicillin loaded magnetic PLGA and PLGA-PEG nanoparticles were prepared by an emulsion-evaporation process (o/w). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the magnetic nanoparticles have the mean diameter within the range of 65-260 nm also they were almost spherical in shape. Magnetic nanoparticles prepared with PLGA showed more efficient entrapment (90%) as compared with PLGA-PEG (48-52%) nanoparticles. In-vitro release of amoxicillin from magnetic PLGA nanoparticles showed that 78% of drug was released over 24 hours. The amount of amoxicillin released from PLGA-PEG s was higher than PLGA.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼