RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fabrication of Carbon Fiber Reinforced Reaction Bonded SiC Composite Fabricated by a Molten Si Infiltration Method ; I. The Effect of Carbon Fiber Coating Process

        윤성호,Phung Nhut Tan,조경선,정훈,김영도,박상환 한국세라믹학회 2008 한국세라믹학회지 Vol.45 No.9

        Reaction bonded silicon carbide (RBSC) composite for heat-exchanger was fabricated by molten Si infiltration method. For enforcing fracture toughness to reaction bonded silicon carbide composite, the surface of carbon fiber has coating layer by SiC or pyrocarbon. For SiC layer coating, CVD method was used. And for carbon layer coating, the phenol resin was used. In the case of carbon layer coating, fracture toughness and fracture strength were enhancing to 4.4MPa ·m 1/2 and 279 MPa. Reaction bonded silicon carbide (RBSC) composite for heat-exchanger was fabricated by molten Si infiltration method. For enforcing fracture toughness to reaction bonded silicon carbide composite, the surface of carbon fiber has coating layer by SiC or pyrocarbon. For SiC layer coating, CVD method was used. And for carbon layer coating, the phenol resin was used. In the case of carbon layer coating, fracture toughness and fracture strength were enhancing to 4.4MPa ·m 1/2 and 279 MPa.

      • KCI등재

        침윤된 Si 및 성형체내 Carbon Source의 양이 반응소결 탄화규소 다공체의 기공률 및 파괴강도에 미치는영향

        윤성호,Phung Nhut Tan,김영도,박상환 한국세라믹학회 2007 한국세라믹학회지 Vol.44 No.7

        A porous reaction bonded silicon carbide (RBSC) was fabricated by a molten Si infiltration method. The porosity and flexural strength of porous RBSC fabricated in this study were dependent upon the amount of carbon source used in the SiC/carbon preform as well as the amount of Si infiltrated into the SiC/carbon preform. The porosity and flexural strength of porous RBSC were in the range of 20 vol.~49 vol.% and 38~61MPa, respectively. With increase of carbon contents and molten Si for infiltration, volume fraction of the pores was gradually decreased, and flexural strength was increased. The porous RBSCs fabricated with the same amount of molten Si show less residual Si around neck with increase of carbon source, as well as a new SiC was formed around neck which resulted in the decreased porosity and improvement of the flexural strength. In addition, decrease of the porosity and increase of the flexural strength were also obtained by increase of the amount of molten Si with the same amount of carbon source. However, it was found that the flexural strength of porous RBSC depends on the porosity rather than the amount of the newly formed SiC in neck phase between SiC particles used as a starting material.

      • KCI등재

        The Effect of SiC Powder Size at Reaction Bonded SiC Composite Fabricated by a Molten Si Infiltration Method

        윤성호,조경선,Phung Nhut Tan,정훈,김영도,박상환 한국세라믹학회 2008 한국세라믹학회지 Vol.45 No.8

        Reaction bonded silicon carbide(RBSC) composite for heat-exchanger was fabricated by molten Si infiltration method. The raw materials with variable particle sizes were used in this experience. The finer the particle size in sintered silicon carbide was the more increasing 3-point bending strength and fracture toughness. As the adaptable particle sizes had been occupied interstice arising from packing sample, the mechanical properties were increased. In the PCS1-1 sample, the 3-point bending strength and fracture toughness were 323MPa and 4.9MPa·m1/2, respectively. Reaction bonded silicon carbide(RBSC) composite for heat-exchanger was fabricated by molten Si infiltration method. The raw materials with variable particle sizes were used in this experience. The finer the particle size in sintered silicon carbide was the more increasing 3-point bending strength and fracture toughness. As the adaptable particle sizes had been occupied interstice arising from packing sample, the mechanical properties were increased. In the PCS1-1 sample, the 3-point bending strength and fracture toughness were 323MPa and 4.9MPa·m1/2, respectively.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼