RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Review on Marine N2 Fixation: Mechanism, Evolution of Methodologies, Rates, and Future Concerns

        P. S. Bhavya,이상헌,민준오,김민섭,장효근,김관우,강재중,이재형,이다빈,조나은,김명준,김예진,이준범,이창화,배현지,유혜주,박상훈,윤미선 한국해양과학기술원 2019 Ocean science journal Vol.54 No.4

        Investigations on marine N2 fixation have gained momentum since 1960s with eventual establishments of relevant methodologies to identify species involved and quantify the rates. The evolution of various methodologies to understand N2 fixation and to estimate its rates were underpinned by the constant efforts of pioneers in the ocean biogeochemical research field. Those efforts succeeded in introducing various methodologies that include experimental (15N2 bubble method and acetylene reduction method), geochemical (N* and P* method), mathematical modelling, and remote sensing techniques. However, the construction of an accurate N budget is still under progress due to inseparable issues associated with each method and difficulties in conducting the experiments onboard on a larger scale. Nevertheless, the contributions by each of the methodologies are significant and helped in forming basic ideas about N2 fixation activities on a global scale. It is not only important to recognize the contributions made by the formation of various methodologies by marine research pioneers, but also vital to summarize what we have achieved in the marine N2 fixation research area so far. Hence, this review is an attempt to brief on the various milestones achieved in research on the N2 fixation mechanism, species involved, evolution of methodologies to estimate N2 fixation rates, species identification, budgets, and future concerns.

      • KCI등재

        A Review on the Macromolecular Compositions of Phytoplankton and the Implications for Aquatic Biogeochemistry

        P. S. Bhavya,김보경,조나은,김관우,강재중,이재형,이다빈,이장한,주희태,안소현,김예원,민준오,강민구,윤미선,강창근,이상헌 한국해양과학기술원 2019 Ocean science journal Vol.54 No.1

        Biochemical composition of phytoplankton is a key indicator of the physiological and nutritional status of phytoplankton. A balanced biochemical pattern represents a healthy and productive metabolism in the autotrophic levels which can facilitate proper functioning of higher level organisms. The estimation of biochemical compositions was initiated in the early 1970’s. However, there has been a significant set of modifications in the extraction method and improvements in the sampling and analysis techniques since then. Similarly, the extent of biochemical measurements from various aquatic ecosystems around the globe has also increased. Recently, biochemical patterns are being used as a tool to track the changes in the physiological status of phytoplankton as a response to climate change. Such investigations are also forming part of research works on marine food webs and the nutritional status of ecosystems. This article is a brief review of research works carried out so far in an attempt to understand the biochemical compositions of phytoplankton in the global oceans and the implications with regard to changing environmental conditions.

      • KCI등재

        Decoupling of Macromolecular Compositions of Particulate Organic Matters between the Water Columns and the Sediment in Geoje-Hansan Bay, South Korea

        김형철,이재형,이원찬,홍석진,강재중,이다빈,조나은,P. S. Bhavya 한국해양과학기술원 2018 Ocean science journal Vol.53 No.4

        The biochemical composition of particulate organic matter (POM) is very important to understand in relation to the trophic conditions of marine ecosystems since it forms the primary trophic base. The present study investigated the biochemical compositions (i.e., carbohydrates, proteins, and lipids) of POM monthly from January to December 2015 in Geoje-Hansan Bay to determine if the macromolecular composition of POM is coupled between the water columns and sediment. A spatial difference in the macromolecular compositions was observed in the water columns between the inner and outer bays, which may be caused by the different physiological conditions of phytoplankton growth that are due to the water circulation pattern in the bay. In contrast, no distinctive spatial difference in the macromolecular compositions was found in the sedimentary organic matter. Overall, while carbohydrates were the dominant (45.7%) macromolecules of the POM in the water columns, proteins were dominant (47.9%) in the sedimentary organic matter during our observation period. Decoupling of the macromolecular compositions between the water columns and underneath the sediment in Geoje-Hansan Bay appears to be a result of the various effects of selective filter feeding by oysters and protein-dominant benthic microalgae and fouling organisms.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼