http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Nanostructured Bulk Ceramics (Part I)
Han, Young-Hwan,Mukherjee, Amiya K. The Korean Ceramic Society 2009 한국세라믹학회지 Vol.46 No.3
The processing and characterization of ceramic nanocomposites, which produce bulk nanostructures with attractive mechanical properties, have been emphasized and introduced at Prof. Mukherjee's Lab at UC Davis. The following subjects will be introduced in detail in Part II, III, and IV. In Part II, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. The next part will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are three times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation. In the fourth section, discussed will be a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method. This allowed the sintering to be completed at significantly lower temperatures and during much shorter times. These improvements in mechanical properties will be discussed in the context of the results from the microstructural investigations.
Mukherjee, R,Kim, S W,Park, T,Choi, M S,Yun, J W Nature Publishing Group 2015 International Journal of Obesity Vol.39 No.9
Background:Galectin 1 (GAL1), an animal lectin is well characterized in the context of cancer, tumor environment, but its physiological roles in obesity remain to be demonstrated. In this study, we investigated whether targeted inhibition of GAL1 prevents obesity based on the previous observations that GAL1 is highly expressed in adipose tissues of high-fat diet (HFD)-induced obese rats.Methods:Lipogenic capacity of Lgals1 knocked down adipocytes was evaluated by determining the expression levels of major lipogenic markers using real-time PCR and immunoblot analysis. GAL1 partner proteins were identified using co-immunoprecipitation followed by protein mass fingerprinting. Finally, inhibitory effect of GAL1 by thiodigalactoside (TDG) was assessed in adipocytes and HFD-induced obese rats.Results:Knockdown of GAL1-encoding gene (Lgals1) attenuated adipogenesis and lipogenesis in both 3T3-L1 and HIB1B adipocytes. Further, direct treatment with TDG, a potent inhibitor of GAL1, to cultured adipocytes in vitro significantly reduced fat accumulation. Our animal experiment revealed that intraperitoneal injection of TDG (5 mg kg<SUP>−1</SUP>) once per week for 5 weeks in Sprague-Dawley (SD) rats resulted in dramatic inhibition of HFD-induced body weight gain (27.3% reduction compared with HFD-fed controls) by inhibiting adipogenesis and lipogensis as well as by increasing expression of the proteins associated with thermogenesis and energy expenditure.Conclusion:GAL1 has an essential role in HFD-induced obesity development. From a clinical viewpoint, pharmaceutical targeting of GAL1 using TDG and other inhibitor compounds would be a novel therapeutic approach for the treatment of obesity.
Mukherjee, Rajib,Choi, Jung-Won,Choi, Duk Kwon,Oh, Tae Seok,Liu, Hao,Yun, Jong Won S. Karger AG 2012 CELLULAR PHYSIOLOGY AND BIOCHEMISTRY Vol.29 No.3
<P>Proper understanding of molecular mechanisms underlying gender dimorphism in obesity for better nutritional recommendation is still in early stages. As white adipose tissues (WAT) is most important tissue in obesity metabolism, comparative proteomic analysis of all three WAT deposits at the same time to yield immensely important protein markers was the primary goal of this study.</P>
Mukherjee, Shubhabrata,Choi, Taesang,Islam, Md Tajul,Choi, Baek-Young,Beard, Cory,Won, Seuck Ho,Song, Sejun Electronics and Telecommunications Research Instit 2020 ETRI Journal Vol.42 No.5
In this paper, we propose a supervised-learning-based spatial performance prediction (SLPP) framework for next-generation heterogeneous communication networks (HCNs). Adaptive asset placement, dynamic resource allocation, and load balancing are critical network functions in an HCN to ensure seamless network management and enhance service quality. Although many existing systems use measurement data to react to network performance changes, it is highly beneficial to perform accurate performance prediction for different systems to support various network functions. Recent advancements in complex statistical algorithms and computational efficiency have made machine-learning ubiquitous for accurate data-based prediction. A robust network performance prediction framework for optimizing performance and resource utilization through a linear discriminant analysis-based prediction approach has been proposed in this paper. Comparison results with different machine-learning techniques on real-world data demonstrate that SLPP provides superior accuracy and computational efficiency for both stationary and mobile user conditions.
Mukherjee, Dip,Sahoo, Bikash Department of Mathematics 2021 Kyungpook mathematical journal Vol.61 No.4
In this paper we look at the three dimensional stagnation point flow problem over a rough rotating disk. We study the theoretical behaviour of the stagnation point flow, or forced flow, in the presence of a slip factor in which convective instability stationary modes appear. We make a numerical investigation of the effects of slip on the behaviour of the flow components of the stagnation point flow where the disk is rough. We provide, for the first time in the literature, a complete convective instability analysis and an energy analysis. Suitable similarity transformations are used to reduce the Navier-Stokes equations and the continuity equation into a system of highly non-linear coupled ordinary differential equations, and these are solved numerically subject to suitable boundary conditions using the bvp4c function of MATLAB. The convective instability analysis and the energy analysis are performed using the Chebyshev spectral method in order to obtain the neutral curves and the energy bars. We observe that the roughness of the disk has a destabilising effect on both Type-I and Type-II instability modes. The results obtained will be prominently treated as benchmarks for our future studies on stagnation flow.
Mukherjee, Subha Shankar,Hossain, Asif The Ecological Society of Korea 2021 Journal of Ecology and Environment Vol.45 No.1
Background: Butterflies make an important part for plant-pollinator guild. These are nectar feeder or occasionally pollen feeder and thus proboscis of the butterfly species are considered as one of the most important variable in relation to the collection of food from plants. In butterfly-plant association, nectar source is principally determined by quality of nectar, corolla length, and nectar quantity. For the butterfly, nectar uptake is determined by proboscis length because flowers with long corolla restrict butterfly species containing shorter proboscis. Empirical studies proved that butterfly species with high wing loading visit clustered flowers and species with low wing loading confined their visit to solitary or less nectar rich flowers. The present study tries to investigate the flower preference of butterfly species from Lycaenidae family having very short proboscis, lower body length, lower body weight and wing span than the most species belonging from Nymphalidae, Pieridae, Papilionidae, and Hesperiidae. Results: Butterflies with shorter proboscis cannot access nectar from deeper flower. Although they mainly visit on less deeper flower to sucking nectar, butterflies with high wing loading visits clustered flowers to fulfill their energy requirements. In this study, we demonstrated flower choice of seven butterfly species belonging to Lycanidiae family. The proboscis length maintains a positive relationship with body length and body weight. Body length maintains a positive relationship with body weight and wing span. Wing span indicate a strong positive relationship with body weight. This study proved that these seven butterfly species namely Castalius rosimon (CRN), Taracus nara (TNA), Zizinia otis (ZOT), Zizula hylax (ZHY), Jamides celeno (JCE), Chilades laius (CLA), and Psuedozizeeria maha (PMA) visit frequently in Tridax procumbens (TPR), Ocimum americanum (OAM) and Syndrella nodiflora (SNO). The species do not visit Lantana camara (LCA) and Catharanthus roseus (CRO) plants. Conclusion: The present study proved that butterfly species visits frequently in Tridax procumbens (TPR), Ocimum americanum (OAM) but less frequently in Syndrella nodiflora (SNO). So, that study determined the butterfly species helps in pollination of these herbs that in turn helps the conservation of these butterfly species.
Mukherjee, Kakali,Saha, Bidyut Korean Chemical Society 2013 대한화학회지 Vol.57 No.4
Oxidation of glutamic acid is performed in aqueous acid media at $30^{\circ}C$ under the kinetic condition [glutamic acid]$_T{\gg}[Cr(VI)]_T$. Effect of combination of micellar catalyst (SDS, TX-100) and promoter (PA, bpy, phen) has been studied. Among the promoters phen accelerates the reaction most in aqueous media. But the rate acceleration is small in the case. Combination of promoter and catalyst produces much better result. Maximum rate enhancement occurs in presence of the combination of bpy and SDS.
Mukherjee, Arup Kumar,Mukherjee, Prasun Kumar,Kranthi, Sandhya The Korean Society of Plant Pathology 2016 Plant Pathology Journal Vol.32 No.6
The cotton leafroll dwarf virus (CLRDV) is one of the most devastating pathogens of cotton. This malady, known as cotton blue disease, is widespread in South America where it causes huge crop losses. Recently the disease has been reported from India. We noticed occurrence of cotton blue disease and chickpea stunt disease in adjoining cotton and chickpea fields and got interested in knowing if these two viral diseases have some association. By genetic studies, we have shown here that CLRDV is very close to chickpea stunt disease associated virus (CpSDaV). We were successful in transmitting the CLRDV from cotton to chickpea. Our studies indicate that CpSDaV and CLRDV in India are possibly two different strains of the same virus. These findings would be helpful in managing these serious diseases by altering the cropping patterns.