RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Immunohistochemical Localization of Endogenous IAA in Peach (Prunus persica L.) Fruit during Development

        Zhang, Wei,Li, Yang,Shi, Mengya,Hu, Hao,Hua, Baoguang,Yang, Aizhen,Liu, Yueping Korean Society of Horticultural Science 2015 원예과학기술지 Vol.33 No.3

        Peach (Prunus persica L.) is a model species for stone fruit studies within the Rosaceae family. Auxin plays an important role in the development of peach fruit. To reveal the distribution of auxin in the tissues of peach fruit, immunohistochemical localization of IAA was carried out in the seed, mesocarp, and endocarp in developing peach fruit using an anti-indole-3-acetic acid (anti-IAA) monoclonal antibody. A strong IAA signal was observed throughout the outer and inner integument during peach fruit development, and the distribution was zonal. The IAA signal was mainly focused in mucilage layers in the outer integument. The outer integument may function to produce or store IAA in the seed; a strong IAA signal was detected in the cells around the vascular tissue, whereas a weak IAA signal was located in the vascular tissues. In the mesocarp, the cells around the vascular bundle tissue gave rise to an IAA signal that increased in the late phase of fruit growth, which coincided with a significant increase in fruit growth. The distribution of IAA, however, was changed when fruit was treated with auxin transport inhibitors NPA (1-N-naphthylphthalamic acid) or TIBA (2, 3, 5-triiodobenzoic acid); in mesocarp tissues, an IAA signal was detected mainly in vessels of the treated fruit. During the critical period of endocarp lignification, the vessel lignification process was negatively correlated with IAA signal. The present results confirmed that the distribution of IAA was different in various tissues of peach fruit according to the developmental stage. This research provides cytological data for further study of the regulatory mechanism of auxin in peach fruit.

      • SCIESCOPUSKCI등재

        Altered Protein Expression in Peach (Prunus persica) Following Fruit Bagging

        Zhang, Wei,Zhao, Xiaomeng,Shi, Mengya,Yang, Aizhen,Hua, Baoguang,Liu, Yueping Korean Society of Horticultural Science 2016 원예과학기술지 Vol.34 No.1

        Fruit bagging has been widely practiced in peach cultivation to produce high quality and unblemished fruit. Moreover, fruit bagging has been utilized to study the effect of shading on the quality of fruit. We conducted a proteomic analysis on peach fruit to elucidate the biochemical and physiological events that characterize the effect of bagging treatment. Comparative analysis of 2D electrophoresis (2-DE) gels showed that relative protein levels differed significantly at 125 DAFB (days after full bloom), as well as at 133 DAFB in fruit that had been bagged until 125 DAFB, followed by exposure to sunlight. Most of the proteins with altered expression were identified by MALDI TOF/TOF. Twenty-one proteins with differential expression among the groups were identified at 125 DAFB, while thirty proteins with differential expression among the groups were identified at 133 DAFB. The analysis revealed that expression of proteins involved in photosynthesis, stress responses, and biochemical processes influencing metabolism were altered during bagging treatment, suggesting that regulation of the synthesis of carbohydrates, amino acids, and proteins influenced fruit size, solid/acid ratio, and peel color. This work provides the first characterization of proteomic changes in peach in response to fruit bagging treatment. Identifying and tracking protein changes may allow us to better understand the mechanisms underlying the effects of bagging treatment.

      • SCIESCOPUSKCI등재

        Altered Protein Expression in Peach (Prunus persica) Following Fruit Bagging

        Wei Zhang,Xiaomeng Zhao,Mengya Shi,Aizhen Yang,Baoguang Hua,Yueping Liu 한국원예학회 2016 원예과학기술지 Vol.34 No.1

        Fruit bagging has been widely practiced in peach cultivation to produce high quality and unblemished fruit. Moreover, fruit bagging has been utilized to study the effect of shading on the quality of fruit. We conducted a proteomic analysis on peach fruit to elucidate the biochemical and physiological events that characterize the effect of bagging treatment. Comparative analysis of 2D electrophoresis (2-DE) gels showed that relative protein levels differed significantly at 125 DAFB (days after full bloom), as well as at 133 DAFB in fruit that had been bagged until 125 DAFB, followed by exposure to sunlight. Most of the proteins with altered expression were identified by MALDI TOF/TOF. Twenty-one proteins with differential expression among the groups were identified at 125 DAFB, while thirty proteins with differential expression among the groups were identified at 133 DAFB. The analysis revealed that expression of proteins involved in photosynthesis, stress responses, and biochemical processes influencing metabolism were altered during bagging treatment, suggesting that regulation of the synthesis of carbohydrates, amino acids, and proteins influenced fruit size, solid/acid ratio, and peel color. This work provides the first characterization of proteomic changes in peach in response to fruit bagging treatment. Identifying and tracking protein changes may allow us to better understand the mechanisms underlying the effects of bagging treatment.

      • SCIESCOPUSKCI등재

        Immunohistochemical Localization of Endogenous IAA in Peach (Prunus persica L.) Fruit during Development

        Wei Zhang,Yang Li,Mengya Shi,Hao Hu,Baoguang Hua,Aizhen Yang,Yueping Liu 한국원예학회 2015 원예과학기술지 Vol.33 No.3

        Peach (Prunus persica L.) is a model species for stone fruit studies within the Rosaceae family. Auxin plays an important role in the development of peach fruit. To reveal the distribution of auxin in the tissues of peach fruit, immunohistochemical localization of IAA was carried out in the seed, mesocarp, and endocarp in developing peach fruit using an anti-indole-3-acetic acid (anti-IAA) monoclonal antibody. A strong IAA signal was observed throughout the outer and inner integument during peach fruit development, and the distribution was zonal. The IAA signal was mainly focused in mucilage layers in the outer integument. The outer integument may function to produce or store IAA in the seed; a strong IAA signal was detected in the cells around the vascular tissue, whereas a weak IAA signal was located in the vascular tissues. In the mesocarp, the cells around the vascular bundle tissue gave rise to an IAA signal that increased in the late phase of fruit growth, which coincided with a significant increase in fruit growth. The distribution of IAA, however, was changed when fruit was treated with auxin transport inhibitors NPA (1-N-naphthylphthalamic acid) or TIBA (2, 3, 5-triiodobenzoic acid); in mesocarp tissues, an IAA signal was detected mainly in vessels of the t reated f ruit. During the c ritical period o f endocarp l ignification, the vessel lignification process was negatively correlated with IAA signal. The present results confirmed that the distribution of IAA was different in various tissues of peach fruit according to the developmental stage. This research provides cytological data for further study of the regulatory mechanism of auxin in peach fruit.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼