RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental Study on the Wing Parameter Optimization of Flapping-Wing Aircraft Based on the Clap-and-Fling Mechanism

        Qian Li,Aihong Ji,Huan Shen,Renshu Li,Kun Liu,Xiangming Zheng,Lida Shen,Qingfei Han 한국항공우주학회 2022 International Journal of Aeronautical and Space Sc Vol.23 No.2

        The design of a flapping-wing aircraft is mainly inspired by flying animals: to improve the lift and efficiency of flapping-wing aircraft, their wings, an essential part of the aircraft, mimic the configuration and geometric characteristics of flying animals. Herein, we conducted wing parameter optimization experiments by changing the wing-vein layout, aspect ratio (AR), surface area, and leading-edge-rod flexibility of a flapping-wing aircraft having four wings with double wing clap-and-fling effects. The AR and leading-edge-rod flexibility significantly influenced the lift through the aircraft’s clap-and-fling effects. Analyzing the wing deformation and lift fluctuation revealed that the leading-edge-rod flexibility delayed the trailing-edge separation during clapping, resulting in a large lift at the beginning of peeling. A pentagonal wing of 155-mm wing length, 5.0 AR, a 100-mm breaking point, and an 80-mm wing-vein convergence point at the leading-edge-rod near the wing root was deemed the optimal wing design. This optimal wing design was used to build a 30 g flapping-wing aircraft for an outdoor flight test, which could fly for 6.5 min with a 4.5-g load, thus demonstrating the developed prototype’s potential for autonomous flight.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼