http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Soltani Panah Hamidreza,Jeong Dong Hwi 한국화학공학회 2024 Korean Journal of Chemical Engineering Vol.41 No.3
This study presents a comparative techno-economic analysis and life cycle impact assessment of hydrogen production from the kraft lignin depolymerization (KLD) with those produced from alkaline electrolysis cell (AEC) and proton exchange membrane electrolysis (PEM). This process happens in a continuous modular fl ow reactor by using the phosphomolybdic acid as a redox-active catalyst and includes depolymerizing the kraft lignin, producing vanillin, acetovanillone, and hydrogen under a low-voltage condition. For the techno-economic analysis, fi rst, the processes were modelled by using the Aspen Plus V12.1 software and then the results were transferred to Aspen Process Economic Analyzer V12 for economic evaluation. In the next step, the life cycle impact assessment was proposed by using the openLCA V1.11.0 software along with the Environmental Footprint database (MID-Point indicator), and 18 impacts were investigated. According to the techno-economic analysis, KLD exhibits a total capital cost that surpasses that of AEC and PEM by more than 18% and 11%, respectively. Furthermore, KLD’s equipment cost exceeds that of AEC and PEM by approximately 0.5% and 7%, respectively, and necessitates additional components. On the other hand, the life cycle assessment revealed that KLD yields lesser environmental impacts than AEC, while PEM exhibits the most exemplary environmental performance.
Hamidreza Majidiani,Shahrzad Soltani,Ali Dalir Ghaffari,Mohamad Sabaghan,Ali Taghipour,Masoud Foroutan 대한백신학회 2020 Clinical and Experimental Vaccine Research Vol.9 No.2
Purpose: The Toxoplasma gondii calcium-dependent protein kinase-3 (CDPK3) is a key enzyme for parasite egress, control of calcium-dependent permeabilization in parasitophorous vacuole membrane and tissue cyst formation. In this study, we comprehensively explored the bioinformatics features of this protein to improve vaccine design against T. gondii. Materials and Methods: Various web servers were employed for the analysis of physico-chemical properties, post-translational modifications, localization in the subcellular milieu, secondary and tertiary structures, as well as B-cell, major histocompatibility complex (MHC)-binding and cytotoxic T-lymphocyte (CTL) epitopes. Results: This protein was a 537 amino acid antigenic and non-allergenic molecule with a molecular weight of 60.42 kDa, a grand average of hydropathicity score of -0.508, and aliphatic index of 79.50. There exists 46.74% alpha helix, 12.48% extended strand, and 40.78% random coil in the secondary structure. Ramachandran plot of the refined model demonstrated 99.3%, 0.7%, and 0.0% of residues in the favored, allowed and outlier areas, respectively. Besides, various potential B-cell (continuous and conformational), MHC-binding and CTL epitopes were predicted for Toxoplasma CDPK3 protein. Conclusion: This article provides a foundation for further investigations, and laid a theoretical basis for the development of an appropriate vaccine against T. gondii infection.
Kambiz Mokhtari,Mehrdad Behforouzi,Kawkab Abdul Aziz Mohammed Al Balush,Hamidreza Soltani,Norhan Ibrahim 국제이네비해양경제학회 2020 International Journal of e-Navigation and Maritime Vol.15 No.1
In the maritime industry, most perceptions, frameworks and methodologies of dealing with hazards are for their risk assessment rather than their risk management. This tendency discloses the reality that within the maritime sectors in areas like shipping, logistics, oil and gas there is a lack of coherent Quantitative Risk Management (QRM) methodology from which to understand the risk-based decisions especially for appropriate risk management such as in seaports’ terminals. Therefore, in this paper initially, during priority assessment of the identified hazards, Fuzzy Set Theory was applied to handle imprecision of the uncertain risk-based statistics to get an accurate result. In the next stage, Fuzzy Fault Tree and Fuzzy Event Tree methods were used to achieve the sequence of quantitative risk analysis. In the final step, a Fuzzy Technique for Order of Preference by Similarity to Ideal Solution tool was used for the implementation of the mitigation phase to complete and conclude the proposed QRM cycle.