RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Safety Evaluation of Underground Gas Pipe under Blasting of Subway Connected Aisle: A Case Study

        Yumin Yang,Zhongwei Cai,Nan Jiang,Chuanbo Zhou,Haibo Li 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.2

        How to ensure the underground gas pipe’s safety under blasting construction of subway connected aisles is a key problem in tunnel construction. Based on the blasting excavation project of Wuhan Rail Transit Line 8 phase II, the numerical model whose reliability is verified by field monitoring data is established by ANSYS/LS-DYNA to analyze the dynamic underground gas pipe’s dynamic characteristics under blasting excavation of the connected aisle. According to the piping design code, the allowable effective stress control standard of underground pipe is proposed to evaluate the underground pipe’s safety under the blasting. The results show that: with the advance of blasting excavation, the position of the most dangerous section will change constantly and the pipe’s peak particle velocity (PPV) will appear an obvious amplification phenomenon in both sides of metro tunnels. The pipe’s PPV is greater than the ground surface’s PPV. A mathematical model is established to predict the pipeline’s PPV based on the linear relationship between the pipeline and the ground surface. According to the correlation between PPV and von-Mises stress of gas pipeline, a mathematical model between the pipe’s von-Mises stress and distance is established to predict the pipeline’s safety, which can provide guidance for actual blasting engineering.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼