http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
최호형(Ho-Hyoung Choi),윤병주(Byoung-Ju Yun) 大韓電子工學會 2011 電子工學會論文誌-SP (Signal processing) Vol.48 No.1
이미징 파이프라인(imaging pipeline)의 목적은 디스플레이 되는 영상을 원영상과 비슷하게 변환하는 것이다. 이를 위해 감마 조정 혹은 히스토그램기반 방법이 영상대비와 세부 영역을 개선하기 위해 제안되었다. 그러나 이러한 방법들은 조도성분과 색도성분이 위치에 따라 변화하므로 영상 개선에 한계가 있다. 따라서 MSR (Multi-Scale Retinex)기법이 제안되었으며, 이는 영상에 따른 가우시안 필터의 크기에 의존하며, 독립적인 로그 신호를 기반으로 한다. 그러므로 영상 보정 후 후광효과(Halo), 색상변화(Color change or graying-out), 특정 색상의 두드러짐 등의 영상 왜곡(image distortion)이 발생한다. 따라서 본 논문에서는 영상을 전역조명성분, 국부조명성분, 반사성분으로 나누는 새로운 색상 보정 방법을 제안한다. 제안한 방법에서 전역조명성분은 가우시안 필터를 적용하여 획득하며, 국부 조명성분은 JND(Just-noticeable difference)기반 적응적 필터를 적용하여 획득한다. 반사성분은 원 영상에 획득된 전역조명성분과 국부조명성분으로 나누어 줌으로써 획득된다. 개선된 영상은 멱함수(power function)를 수행한 후 이들의 곱으로 획득되며, sRGB로 표현된다. 실험 결과에서 제안한 방법이 기존의 방법에 비해 우수한 성능을 보인다. The objective of the imaging pipeline is to transform the original scene into a display image that appear similar, Generally, gamma adjustment or histogram-based method is modified to improve the contrast and detail. However, this is insufficient as the intensity and the chromaticity of illumination vary with geometric position. Thus, MSR (Multi-Scale Retinex) has been proposed. the MSR is based on a channel-independent logarithm, and it is dependent on the scale of the Gaussian filter, which varies according to input image. Therefore, after correcting the color, image quality degradations, such as halo, graying-out, and dominated color, may occur. Accordingly, this paper presents a novel color correction method using a modified image formation model in which the image is divided into three components such as global illumination, local illumination, and reflectance. The global illumination is obtained through Gaussian filtering of the original image, and the local illumination is estimated by using JND-based adaptive filter. Thereafter, the reflectance is estimated by dividing the original image by the estimated global and the local illumination to remove the influence of the illumination effects. The output image is obtained based on sRGB color representation. The experiment results show that the proposed method yields better performance of color correction over the conventional methods.
정나라,송재욱,최호형,강현수,Jung, Na-ra,Song, Jae-wook,Choi, Ho-Hyoung,Kang, Hyun-soo 한국정보통신학회 2016 한국정보통신학회논문지 Vol.20 No.3
This paper presents a decision method of middle ear disease which is developed in children and adults. In the proposed method, features are extracted from the middle ear disease images and normal images using HoG (histogram of oriented gradient) descriptor and the extracted features are learned by SVM (support vector machine) classifier. To obtain an input vector into SVM, an input image is resized to a predefined size and then the resized image is partitioned into 16 blocks each of which is partitioned into 4 sub-blocks (namely cell). Finally, the feature vector with 576 components is given by using HoG with 9 bins and it is used as SVM learning and classification. Input images are classified by SVM classifier based on the model of learning features. Experimental results show that the proposed method yields the precision of over 90% in decision.