RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증

        전수동,배선명,윤인하,강태영,백금문,Jeon, Soo Dong,Bae, Sun Myung,Yoon, In Ha,Kang, Tae Young,Baek, Geum Mun 대한방사선치료학회 2014 대한방사선치료학회지 Vol.26 No.1

        Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.

      • 유방암 접선조사 치료 방법에 대한 반대쪽 유방에서의 산란선량 평가

        반태준,전수동,곽정원,백금문,Ban, Tae-Joon,Jeon, Soo-Dong,Kwak, Jung-Won,Baek, Geum-Mun 대한방사선치료학회 2012 대한방사선치료학회지 Vol.24 No.2

        Purpose: The concern of improving the quality of life and reducing side effects related to cancer treatment has been a subject of interest in recent years with advances in cancer treatment techniques and increasing survival time. This study is an analysis of differing scattered dose to the contralateral breast using common different treatment techniques. Materials and Methods: Eclipse 10.0 (Varian, USA) based $30^{\circ}$ EDW (Enhanced dynamic wedge) plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FiF (field in field) plan were established using CT image of breast phantom which in our hospital. Each treatment plan were designed to exposure 400 cGy using CL-6EX (VARIAN, USA) and we measured scattered dose at 1 cm, 3 cm, 5 cm, 9 cm away from medial side of the phantom at 1 cm depth using ionization chamber (FC 65G, IBA). We carried out measurement by separating effect of medial tangential field and lateral tangential field and analyze. Results: The evaluation of scattered dose to contralateral breast, $30^{\circ}$ EDW plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FIF plan showed 6.55%, 4.72%, 2.79%, 2.33%, 1.87% about prescription dose of each treatment plan. The result of scattered dose measurement by separating effect of medial tangential field and lateral tangential field results were 4.94%, 3.33%, 1.55%, 1.17%, 0.77% about prescription dose at medial tangential field and 1.61%, 1.40%, 1.24%, 1.16%, 1.10% at lateral tangential field along with measured distance. Conclusion: In our experiment, FiF treatment technique generates minimum of scattered dose to contralateral breast which come from mainly phantom scatter factor. Whereas $30^{\circ}$ wedge plan generates maximum of scattered doses to contralateral breast and 3.3% of them was scattered from gantry head. The description of treatment planning system showed a loss of precision for a relatively low scatter dose region. Scattered dose out of Treatment radiation field is relatively lower than prescription dose but, in decision of radiation therapy, it cannot be ignored that doses to contralateral breast are related with probability of secondary cancer.

      • 광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰

        김정미,전수동,백금문,조영필,윤화룡,권경태,Kim, Jeong-Mi,Jeon, Su-Dong,Back, Geum-Mun,Jo, Young-Pil,Yun, Hwa-Ryong,Kwon, Kyung-Tae 대한방사선치료학회 2010 대한방사선치료학회지 Vol.22 No.2

        Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

      • Prone Breast Phantom을 이용한 couch 산란영향 평가

        김민석,전수동,배선명,백금문,송흥권,Kim, Min Seok,Jeon, Soo Dong,Bae, Sun Myeong,Baek, Geum Mun,Song, Heung Gwon 대한방사선치료학회 2017 대한방사선치료학회지 Vol.29 No.2

        목 적: 유방암 환자의 방사선치료 시 엎드린 자세를 적용하면 폐와 심장에 들어가는 선량을 줄일 수 있다. 하지만 빔 방향에 포함되는 couch의 영향으로 피부선량 증가 및 심부선량이 감소한다. 따라서 본 실험에서는 air gap을 이용해서 couch로 인한 영향을 줄일 수 있는 방법을 알아보고자 하였다. 대상 및 방법: 본원에서 치료 받은 유방암 환자의 전산화단층영상을 바탕으로 3D 프린터(Builder Extreme 1000)를 이용하여 체적을 동일하게 묘사한 인체모형을 제작하였다. 제작한 인체모형을 전산화단층촬영하고 전산화치료계획시스템(Eclipse 13.6, Varian, USA)을 이용하여 6MV, Field-in-Field technique을 이용한 200 cGy/fx의 치료계획을 수립하였다. 피부선량 측정을 위해 내, 외측 4 지점(Med 1, Med 2, Lat 1, Lat 2)에서 광자극발광선량계(Optically Stimulated Luminescence Detector, OSLD)를 이용한 측정을 진행하였고, 심부선량 측정을 위해 유방의 전면과 후면의 2 지점(Anterior, Posterior)에서 FC65-G ion-chamber를 이용한 측정을 하였다. Couch와 인체모형 사이의 air gap(기준 3 cm)을 1 cm 씩 총 6 cm까지 증가시켜가며 측정하였으며 치료계획 선량을 기준으로 평가하였다. 결 과: 피부선량 측정 결과 외측 지점은 치료계획과 비교하여 ${\pm}5%$ 이내의 유사한 값을 보였다. 내측 1 지점은 air gap이 증가할수록 감소하며 3 cm 이상부터 7 % 이상 감소하였고, 내측 2 지점은 4 % 이상 감소하였다. 심부선량 측정 결과 후면 지점은 air gap 차이에 의한 선량변화가 ${\pm}1%$ 이내의 값을 보였다. 전면 지점의 선량은 air gap이 증가할수록 높아지며 3 cm 이상부터 치료계획 보다 4 % 증가한 값을 보였다. 결 론: 본 실험을 통해 couch와 인체모형 사이의 air gap을 특정 거리까지 증가시켰을 때 couch로 인한 피부선량과 심부선량의 영향이 감소함을 확인하였다. 따라서 유방암 환자에 대한 치료 전 선량평가를 진행하여 각 환자에게 최적의 air gap을 적용한다면 피부보효 효과를 높일 수 있고, 정확한 심부선량의 전달이 가능할 것으로 사료된다.

      • Jaw tracking을 이용한 다발성 뇌 전이의 용적세기조절회전치료에 대한 유용성 평가

        김태원,유순미,전수동,윤인하,백금문,Kim, Tae Won,Yoo, Soon Mi,Jeon, Soo Dong,Yoon, In Ha,Back, Geum Mun 대한방사선치료학회 2018 대한방사선치료학회지 Vol.30 No.1

        Purpose : The aims of this study were to compare and assess the effectiveness of Volumetric Modulated Arc Therapy(VMAT) using jaw tracking(JT) and fixed jaw(FJ) in radiation therapy of multiple brain metastasis. Methode and material : Among the patients with Multiple Brain Metastasis treated with jaw tracking, 10 patients with more than 6 tumors and with the size of radiation field $14{\times}14cm^2$ or more were included. Each Treatment plans with jaw tracking(JT) and fixed jaw(FJ) was established with Eclipse (Ver. 13.6 Varian, USA). Gamma Index (3 mm, 3 % confidence interval - 95 %) and maximum dose difference were measured with an electronic portal imaging device(EPID). The $D_{max}$ and $D_{mean}$ of Organ At Risk(OAR) were assessed and compared, and the Conformity Index(CI) and Homogeneity Index(HI) were evaluated. Result : Evaluating jaw tracking(JT) and fixed jaw(FJ) outcomes, in all cases, Gamma Index met the permissible standard of 3 mm, 3 % confidence intervals of 95 %. The maximum dose difference value from the areas with leaf end transmission was measured at a maximum of 98.4 % and an average of 43.6 % in clockwise(CW), and 67.9 % and 41.0 % for each in Counter-Clockwise(CCW). With jaw tracking, the maximum value of $D_{max}$ for each normal organ in OAR decreased in 15.36 %~74.59 % with the average value decreasing in 2.84 %~39.80 %. The maximum value of $D_{mean}$ in OAR decreased in 27.90 %~65.23 %, with the average value decreasing in 7.70 %~41.71 %. No change has been found in Conformity Index and Homogeneity Index values. Conclusion : When Jaw tracking is used in treating patients with multiple brain metastasis with VMAT, the unnecessary exposure due to leakage and transmission of radiation in unspecified areas was reduced, without affecting the dose distribution of the planning target volume(PTV), and the availability of radiation therapy with lower doses in normal organs is expected.

      • 식도암 세기조절방사선치료와 용적세기조절회전치료에 대한 Jaw-Tracking의 유용성 평가

        오현택,유순미,전수동,김민수,송흥권,윤인하,백금문,Oh, Hyeon Taek,Yoo, Soon Mi,Jeon, Soo Dong,Kim, Min Su,Song, Heung Kwon,Yoon, In Ha,Back, Geum Mun 대한방사선치료학회 2019 대한방사선치료학회지 Vol.31 No.1

        Purpose : To evaluate the effectiveness of Jaw-tracking(JT) technique in Intensity-modulated radiation therapy(IMRT) and Volumetric-modulated arc therapy(VMAT) for radiation therapy of esophageal cancer by analyzing volume dose of perimetrical normal organs along with the low-dose volume regions. Materials and Method: A total of 27 patients were selected who received radiation therapy for esophageal cancer with using $VitalBeam^{TM}$(Varian Medical System, U.S.A) in our hospital. Using Eclipse system(Ver. 13.6 Varian, U.S.A), radiation treatment planning was set up with Jaw-tracking technique(JT) and Non-Jaw-tracking technique(NJT), and was conducted for the patients with T-shaped Planning target volume(PTV), including Supraclavicular lymph nodes(SCL). PTV was classified into whether celiac area was included or not to identify the influence on the radiation field. To compare the treatment plans, Organ at risk(OAR) was defined to bilateral lung, heart, and spinal cord and evaluated for Conformity index(CI) and Homogeneity index(HI). Portal dosimetry was performed to verify a clinical application using Electronic portal imaging device(EPID) and Gamma analysis was performed with establishing thresholds of radiation field as a parameter, with various range of 0 %, 5 %, and 10 %. Results: All treatment plans were established on gamma pass rates of 95 % with 3 mm/3 % criteria. For a threshold of 10 %, both JT and NJT passed with rate of more than 95 % and both gamma passing rate decreased more than 1 % in IMRT as the low dose threshold decreased to 5 % and 0 %. For the case of JT in IMRT on PTV without celiac area, $V_5$ and $V_{10}$ of both lung showed a decrease by respectively 8.5 % and 5.3 % in average and up to 14.7 %. A $D_{mean}$ decreased by $72.3{\pm}51cGy$, while there was an increase in radiation dose reduction in PTV including celiac area. A $D_{mean}$ of heart decreased by $68.9{\pm}38.5cGy$ and that of spinal cord decreased by $39.7{\pm}30cGy$. For the case of JT in VMAT, $V_5$ decreased by 2.5 % in average in lungs, and also a little amount in heart and spinal cord. Radiation dose reduction of JT showed an increase when PTV includes celiac area in VMAT. Conclusion: In the radiation treatment planning for esophageal cancer, IMRT showed a significant decrease in $V_5$, and $V_{10}$ of both lungs when applying JT, and dose reduction was greater when the irradiated area in low-dose field is larger. Therefore, IMRT is more advantageous in applying JT than VMAT for radiation therapy of esophageal cancer and can protect the normal organs from MLC leakage and transmitted doses in low-dose field.

      • 두경부암 환자의 MVCT를 이용한 치아 인공물 보정에 따른 선량평가

        신충훈,윤인하,전수동,김정미,김호진,백금문,Shin, Chung Hun,Yun, In Ha,Jeon, Su Dong,Kim, Jeong Mi,Kim, Ho Jin,Back, Geum Mun 대한방사선치료학회 2019 대한방사선치료학회지 Vol.31 No.2

        Purpose: Metals induce metal artifact during CT-image for therapy planning, and it occurs images distortion, which affects the volumetric measurement and radiation calculation. In the case of using megavoltage computed tomography(MVCT), the volume of metals can be measured as similar to true volume due to minimal metal artifact outcome. In this study, radiation assessment was conducted by comparing teeth volume from images of kVCT and MVCT of head and neck cancer patients, then assigning to kVCT image to calculate radiation after obtaining the similar volume of true teeth volume from MVCT. Also, formal IR image was able to verify the accuracy of radiation calculation. Material and method: 5 head and neck cancer patients who had intensity-modulated radiation therapy from Radixact<sup>®</sup> Series were of the subject in this study. Calculations of radiation when constraining true teeth volume out of kVCT image(A-CT) and when designated specific HU after teeth assigned using MVCT image were compared with formal IR image. Treatment planning was devised at the same constraints and mean dose was measured at the radiation assess points. The points were anterior of the teeth, between PTV and the teeth, the interior of PTV near the teeth, and the teeth where 5cm distance from PTV. Result: A difference of metals volume from kVCT and MVCT image was mean 3.49±2.61cc, maximum 7.43cc. PTV was limited to where the internal teeth were fully contained. The results of PTV dose evaluation showed that the average CI value of the kVCT treatment planning without the artifact correction was 0.86, and the average CI value of the kVCT with the artifact correction using MVCT image was 0.9. Conclusion: When the Treatment Planning was made without correction of metal artifacts, the dose of PTV was underestimated, indicating that dose uncertainty occurred. When the computerized treatment plan was made without correction of metal artifacts, the dose of PTV was underestimated, indicating that dose uncertainty occurred.

      • 토모치료기 Catcher<sup>TM</sup> Couch의 유용성에 대한 고찰

        엄기천,이충환,전수동,송흥권,백금문,Um, Ki Cheon,Lee, Chung Hwan,Jeon, Soo Dong,Song, Heung Kwon,Back, Geum Mun 대한방사선치료학회 2019 대한방사선치료학회지 Vol.31 No.2

        Purpose: Recently, A Catcher was added to prevent sagging in Radixact<sup>®</sup> X9. In this study, We quantitatively compared general couch of Tomo-HDA<sup>®</sup> with catcher couch of Radixact<sup>®</sup> X9 using the human phantom and evaluated usefulness of catcher. Materials and methods: We used rando phantom for phantom study and set the each iso-center of head and neck region and Pelvis region for region parameter. Furthermore, We used hand made low melting point alloys for weight parameter. MVCT(Mega Voltage Computed Tomography) images were acquired for vertical error and rotation(pitch) error measurement increasing weight(A: 15kg, A+B: 30kg, A+B+C: 45kg). We selected 120 patients who has been treated using Tomotherpy machine for patient study. 60 patients has been treated in Tomo-HDA<sup>®</sup> and the other 60 patients treated in Radixact<sup>®</sup> X9. In the patient study methods, vertical error and rotation(pitch) error was measured for mean value calculation using MVCT images acquired on first day of radiation therapy. Result: Result of phantom study, Vertical error and rotation(pitch) error was increased proportionally increased as the weight increases in general couch of Tomo-HDA<sup>®</sup>. each maximum value was 7.52mm, 0.38° in head and neck region and 11.94mm, 0.92° in pelvis region. However, We could confirm that there was stable error range(0.02~0.1mm, 0~0.04°) in Catcher couch of Radixact<sup>®</sup>. Result of patient study, The head and neck region was measured 4.79mm 0.33° lower, and the pelvis region was measured 7.66mm, 0.22° lower in Catcher couch of Radixact<sup>®</sup> X9. Conclusion: In this study, Vertical error and rotation(pitch) error was proportionally increased as the weight increases in general couch of Tomo-HDA<sup>®</sup>. Especially, The pelvis region error was more increased than the head and neck region error. However, Vertical error and rotation(pitch) error was regularly generated regardless of weight or regions in Catcher<sup>TM</sup> couch of Radixact<sup>®</sup> X9 that this study's purpose. In conclusion, Catcher<sup>TM</sup> couch of Radixact<sup>®</sup> X9 can minimize mechanical error that couch sagging. Furthermore, The pelvis region is more efficiency than head and neck region. In radiation therapy using Tomotherapy machine, it is regarded that may contribute to minimizing unadjusted pitch error due to characters of Tomotherapy.

      • KCI등재

        Dosimetry Check™를 이용한 MVCT 선량계산 모델 구축에 관한 연구

        엄기천(Ki-Cheon Um),김창환(Chang-Hwan Kim),전수동(Soo-Dong Jeon),백금문(Geum-Mun Back) 대한방사선과학회(구 대한방사선기술학회) 2020 방사선기술과학 Vol.43 No.6

        The purpose of this study was to construct a model of MVCT(Megavoltage Computed Tomography) dose calculation by using Dosimetry Check™, a program that radiation treatment dose verification, and establish a protocol that can be accumulated to the radiation treatment dose distribution. We acquired sinogram of MVCT after air scan in Fine, Normal, Coarse mode. Dosimetry Check™(DC) program can analyze only DICOM(Digital Imaging Communications in Medicine) format, however acquired sinogram is dat format. Thus, we made MVCT RC-DICOM format by using acquired sinogram. In addition, we made MVCT RP-DICOM by using principle of generating MLC(Multi-leaf Collimator) control points at half location of pitch in treatment RP-DICOM. The MVCT imaging dose in fine mode was measured by using ionization chamber, and normalized to the MVCT dose calculation model, the MVCT imaging dose of Normal, Coarse mode was calculated by using DC program. As a results, 2.08 cGy was measured by using ionization chamber in Fine mode and normalized based on the measured dose in DC program. After normalization, the result of MVCT dose calculation in Normal, Coarse mode, each mode was calculated 0.957, 0.621 cGy. Finally, the dose resulting from the process for acquisition of MVCT can be accumulated to the treatment dose distribution for dose evaluation. It is believed that this could be contribute clinically to a more realistic dose evaluation. From now on, it is considered that it will be able to provide more accurate and realistic dose information in radiation therapy planning evaluation by using Tomotherapy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼