RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 가을철 한반도의 기압계 유형과 안개발생에 관한 연구

        민경덕,김동정 경북대학교 환경과학연구소 1990 環境科學硏究所論文集 Vol.4 No.1

        Meteorological status for Autumn fog at 14 observing stations for the period 19801985 were studied to understand the relationships between pressure patterns and fog-occurrences over Korean peninsular. The relationships between pressure pattern and fog-occurrences were established using weather maps. Predominent pressure patterns for favorable fog-occurrences are divided into four types, which are front and trough pattern (3396), migratory tonal belt type anticyclone pattern(306), migratory meridional belt type anticyclone pattern(1596) and transformed anticyclone pattern(156).

      • KCI등재

        중력탐사(重力探査)에 의(依)한 마산(馬山)-부산간(釜山間)의 지하구조(地下構造) 연구(硏究)

        민경덕,김정우,Min, Kyung Duck,Kim, Jeong Woo 대한자원환경지질학회 1987 자원환경지질 Vol.20 No.3

        The gravity measurement has been conducted at 69 points with an interval of about 1km along the national road between Masan and Busan through Kimhae to study on the subsurface geology and structure of Kyongsang basin. The Bouguer gravity anomalies were obtained from the observed gravity values, and interpreted by means of the Fourier-series method and Talwani method for 2-dimensional body. The depth of Conrad discontinuity is about 14.8km at the west end of survey line, and increases smoothly to about 13.6km at the east end. But it is uplifted by about 500m between Yangsan and Dongnae faults. The depth of the basement of Kyongsang basin is about 4.8km at the west end. It decreases gradually passing Masan, and reaches the maximum depth of 5.6km at the 15km east of Masan. Hereafter, it starts to increase to 4.3km at the east end. It is also uplifted by about 500m between Yangsan and Dongnae faults. The Bulgugsa granites which cause two low Bouguer gravity anomaly zones are distributed in the vicinity of Masan at depth of about 3.5km and Kimhae area at depth of about 5.3km. Diorite, granodiorite, aplite, and felsite are distributed with various depth of about 1~1.7km, and Jusasan andesitic rocks, except porphyritic one located at the west of Kimhae, are distributed with depth of about 1km. Three fracture zones associated with faults are located at the places where v-shaped Bouguer gravity anomalies are appeared.

      • KCI등재

        마그마관입에 의한 상부퇴적층의 변형에 관한연구

        민경덕,김원영,Min, Kyung Duck,Kim, Won Young 대한자원환경지질학회 1977 자원환경지질 Vol.10 No.1

        The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

      • KCI등재

        지층모형(地層模型)에 의(依)한 전기비저항(電氣比抵抗) 탐사법(探査法) 연구(硏究)

        민경덕,이영훈,Min, Kyung Duck,Lee, Young Hoon 대한자원환경지질학회 1979 자원환경지질 Vol.12 No.1

        A model study was conducted for the interpretation of simple geologic structures. Experiments were carried out for the cases of two horizontal beds and dipping beds in a water tank by using Wenner and Schlumberger arrays respectively. As a geologic stratum of experimental model, cement be (cement: sand=1:2) of $70cm{\times}60cm{\times}10cm$ was used. It was found out from a preliminary experiment that a measuring sounding of Wenner arrays is one third of the distance between two current electrodes, and Schlumberger arrays is one fourth of the distance which is a half of the value determined by usual method of calculation. Equi-resistivity curves were obtained for the cases of horizontal beds and dipping beds, and mapped on the longitudinal and cross sections of the water tank. These curves delineate the shape and degree of dip of bed to some extent. The calculation of depth to beds by using a master curve is somewhat complicated and inexact. In this study, new method for this calculation using a ${\rho}_a/{\rho}_1-a$ graph was proposed, and turned out that this method is simpler and exact.

      • KCI등재

        모암(母岩)의 전기비저항(電氣比抵抗) 변화(變化)에 따른 외견비저항(外見比抵抗)의 변화양상(變化樣相)에 관(關)한 모형연구(模型硏究)

        민경덕,전명순,Min, Kyung Duck,Jun, Myoung Soon 대한자원환경지질학회 1980 자원환경지질 Vol.13 No.3

        A model study was conducted for the investigation of apparent resistivity variation along with electric resistivity variation of host rock and dip variation of bed. Experiments were carried out for the cases of horizontal and dipping beds in a water tank by using Wenner and Schlumberger arrays and by changing salinity of water. The ratios of resistivity values of the bed to that of brine were 1 : 10, 1 : 50, 1 : 100 and 1 : 500. Natural coally-shale of $55cm{\times}35cm{\times}3.5cm$ was used as a bed for experimental model, and brine as a host rock. Equi-resistivity curves and characteristic curves were obtained for each case of the experiment. The equi-resistivity curve was drawn both on the cross section parallel to strike of bed and longitudinal section perpendicular to it. The characteristic curve was drawn on the cross section. In the case of dipping bed of different dips, the curves are parallel to the boundary of the bed in the upper part of the bed, and are inclined to the opposite direction with the same angle of the dip of bed in the lower part. We can deduce, from the equi-resistivity curves, the location, shape and dip of the bed. It is shown in the characteristic curves that when the ratio of resistivity value of bed to that of host rock increases, the slope of curves becomes steeper, location of low-resistivity zone lower, and the width of it narrower. The slope of curves also becomes steeper when dip of bed increases. We can deduce, from the characteristic curves, the ratio of resistivity values between adjacent beds. It was found out from the experiments that electric resistivity method could be applicable to prospecting for underground geology with an electric resistivity contrast of 1 : 10. This fact strongly suggests that distinction of coal from coally-shale could be possible in a certain field condition.

      • KCI등재

        중력탐사(重力探査)에 의(依)한 경상층군내(慶尙層群內) 왜관(倭館)-포항간(浦項間)의 지하구조(地下構造) 연구(硏究)

        민경덕,정종대,Min, Kyung Duck,Chung, Chong Dae 대한자원환경지질학회 1985 자원환경지질 Vol.18 No.4

        The gravity measurement has been conducted at 113 stations with an interval of about 1km along the national road of about 120km running from Busangdong to Pohang through Waekwan, Daegu, Youngchun and Aankang. The subsurface geology and structure along the survey line is interpreted from Bouguer anomaly by applying Fourier method and Talwani method for two dimensional body. The mean depth of Moho discontinuity is 31.4km, and the depth decreases very slowly from inner continent toward east coast. The depth of Conrad discontinuity increases from 11km at the east coastal area to 17km at the inner continental area, and especially increases rapidly in the area between Waekwan to Busangdong. The depth of basement of Kyoungsang Basin inereases from near Waekwan toward Daegu upto about 4. 8km, and increases rapidly to reach the maximum depth of about 8.5km at 8km east of Daegu. But it starts to decrease from the place of 10km west of Youngchun, and is about 7.2km at Youngchun and about 6km at 6km east of Youngchun. The depth starts to increase smoothly beyond this point, and is 7km at 15km east of Youngchun. From this point, the depth starts to decrease again, and is about 3.8km at Ankang. The depth of basement of Pohang Basin is 500m at Pohang and about 650m at 5km west of Pohang. A massive granite body which is considered to be a part of Palgongsan Granite exposed at the depth of 1. 5km at 9km west of Youngchun. Another massive granite body is situated underneath the Pohang Basin at depth of 1.5 to 2km, and sedimentary rocks of Kyoungsang Group and volcanic rocks are distributed between Pohang Basin and this granite body. Finally, Yangsan Fault is identified at about 2.5km east of Ankang.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼