RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        SPA0355 attenuates ischemia/reperfusion-induced liver injury in mice

        배의진,양재도,가선오,우성지,이영래,유희철,조백환,구정현,Hui-Yuan Zhao,류재하,이상명,전라옥,박병현 생화학분자생물학회 2014 Experimental and molecular medicine Vol.46 No.-

        Hepatic ischemia/reperfusion (I/R) injury leads to oxidative stress and acute inflammatory responses that cause liver damage and have a considerable impact on the postoperative outcome. Much research has been performed to develop possible protective techniques. We aimed to investigate the efficacy of SPA0355, a synthetic thiourea analog, in an animal model of hepatic I/R injury. Male C57BL/6 mice underwent normothermic partial liver ischemia for 45 min followed by varying periods of reperfusion. The animals were divided into three groups: sham operated, I/R and SPA0355 pretreated. Pretreatment withSPA0355 protected against hepatic I/R injury, as indicated by the decreased levels of serum aminotransferase and reduced parenchymal necrosis and apoptosis. Liver synthetic function was also restored by SPA0355 as reflected by the prolonged prothrombin time. To gain insight into the mechanism involved in this protection, we measured the activity of nuclear factor-jB (NF-jB), which revealed that SPA0355 suppressed the nuclear translocation and DNA binding of NF-jB subunits. Concomitantly, the expression of NF-jB target genes such as IL-1b, IL-6, TNF-a and iNOS was significantly downregulated. Lastly, the liver antioxidant enzymes superoxide dismutase, catalase and glutathione were upregulated by SPA0355 treatment,which correlated with the reduction in serum malondialdehyde. Our results suggest that SPA0355 pretreatment prior to I/R injury could be an effective method to reduce liver damage.

      • KCI등재

        Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability

        문영재,윤지영,최화정,가선오,김정렬,박병현,조의식 생화학분자생물학회 2016 Experimental and molecular medicine Vol.48 No.-

        Regulation of osteoblast and osteocyte viability is essential for bone homeostasis. Smad4, a major transducer of bone morphogenetic protein and transforming growth factor-β signaling pathways, regulates apoptosis in various cell types through a mitochondrial pathway. However, it remains poorly understood whether Smad4 is necessary for the regulation of osteoblast and osteocyte viability. In this study, we analyzed Smad4ΔOs mice, in which Smad4 was subjected to tissue-specific disruption under the control of the 2.3-kb Col1a1 promoter, to understand the functional significance of Smad4 in regulating osteoblast/osteocyte viability during bone formation and remodeling. Smad4ΔOs mice showed a significant increase in osteoblast number and osteocyte density in the trabecular and cortical regions of the femur, whereas osteoclast activity was significantly decreased. The proliferation of osteoblasts/osteocytes did not alter, as shown by measuring 5′-bromo-2′deoxyuridine incorporation. By contrast, the percentage of TUNEL-positive cells decreased, together with a decrease in the Bax/Bcl-2 ratio and in the proteolytic cleavage of caspase 3, in Smad4ΔOs mice. Apoptosis in isolated calvaria cells from Smad4ΔOs mice decreased after differentiation, which was consistent with the results of the TUNEL assay and western blotting in Smad4ΔOs mice. Conversely, osteoblast cells overexpressing Smad4 showed increased apoptosis. In an apoptosis induction model of Smad4ΔOs mice, osteoblasts/osteocytes were more resistant to apoptosis than were control cells, and, consequently, bone remodeling was attenuated. These findings indicate that Smad4 has a significant role in regulating osteoblast/osteocyte viability and therefore controls bone homeostasis.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼