RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIEKCI등재

        Diagnostic value of alcoholic liver disease (ALD)/nonalcoholic fatty liver disease (NAFLD) index combined with γ-glutamyl transferase in differentiating ALD and NAFLD

        ( Junling Wang ),( Ping Li ),( Zhilong Jiang ),( Qiuhui Yang ),( Yuqiang Mi ),( Yonggang Liu ),( Ruifang Shi ),( Yonghe Zhou ),( Jinsheng Wang ),( Wei Lu ),( Si Li ),( Dan Liu ) 대한내과학회 2016 The Korean Journal of Internal Medicine Vol.31 No.3

        Background/Aims: This study aimed to verify the reliability of the alcoholic liver disease (ALD)/nonalcoholic fatty liver disease (NAFLD) index (ANI) for distinguishing ALD in patients with hepatic steatosis from NAFLD, and to investigate whether ANI combined with γ-glutamyl transferase (GGT) would enhance the accuracy of diagnosis in China. Methods: A hundred thirty-nine cases of fatty liver disease (FLD) were divided into two groups of ALD and NAFLD. The ANI was calculated with an online calculator. All indicators and ANI values were analyzed using statistical methods. Results: ANI was significantly higher in patients with ALD than in those with NAFLD (7.11 ± 5.77 vs. .3.09 ± 3.89, p < 0.001). With a cut-off value of .0.22, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of diagnosed ALD cases was 87.1%, 92.5%, and 0.934 (95% confidence interval [CI], 0.879 to 0.969), respectively. The corresponding values for aspartate aminotransferase (AST)/alanine transaminase (ALT), mean corpuscular volume (MCV), and GGT were 75.29%, 72.94%, and 0.826 (95% CI, 0.752 to 0.885); 94.34%, 83.02%, and 0.814 (95% CI, 0.739 to 0.875) and 80.23%, 79.25%, and 0.815 (95% CI, 0.740 to 0.876), respectively. ANI AUROC was significantly higher than the AST/ ALT, MCV, or GGT AUROCs (all p < 0.001), moreover, ANI showed better diagnostic performance. The combination of ANI and GGT showed a better AUROC than ANI alone (0.976 vs. 0.934, p = 0.016). The difference in AUROCs between AST/ALT, MCV, and GGT was not statistically significant (all p > 0.05). Conclusions: ANI can help distinguish ALD from NAFLD with high accuracy; when ANI was combined with GGT, its effectiveness improved further.

      • SCIESCOPUSKCI등재
      • SCIESCOPUSKCI등재
      • KCI등재

        MiR-144-3p and Its Target Gene beta-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

        Lixuan Wang,Kuo Li,Junling Zhang,Chunxue Ji 한국분자세포생물학회 2016 Molecules and cells Vol.39 No.7

        MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neurodegenerative diseases, Parkinson’s disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, -amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes in-volved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

      • SCIESCOPUSKCI등재

        Autonomous exploration for radioactive sources localization based on radiation field reconstruction

        Xulin Hu,Junling Wang,Jianwen Huo,Ying Zhou,Yunlei Guo,Li Hu Korean Nuclear Society 2024 Nuclear Engineering and Technology Vol.56 No.4

        In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.

      • KCI등재

        MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

        Li, Kuo,Zhang, Junling,Ji, Chunxue,Wang, Lixuan Korean Society for Molecular and Cellular Biology 2016 Molecules and cells Vol.39 No.7

        MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

      • KCI등재

        ACA: Automatic search strategy for radioactive source

        Huo Jianwen,Hu Xulin,Wang Junling,Hu Li 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.8

        Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor environments to avoid radiation exposure for technicians. However, in the indoor environments, especially in the presence of obstacles, how to make the robots with limited sensing capabilities automatically search for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to be further improved to meet practical scenarios such as limited exploration time. This paper proposes an automatic source search strategy, abbreviated as ACA: the location of source is estimated by a convolutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of radiation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algorithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to train the network model in advance. When the searcher enters the search area where the radioactive source exists, the location of source is estimated by the network model and the search path is planned by the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of radioactive source. The experimental results show that the average number of radiometric measurements and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor environment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA algorithm successfully searches for the source with fewer moving steps and sparse radiometric data

      • KCI등재

        ISAR Image Registration Based on Line Features

        Linhua Wu,Lizhi Zhao,Junling Wang,Jiaoyang Su,Weijun Cheng 한국전자파학회 2024 Journal of Electromagnetic Engineering and Science Vol.24 No.3

        Inverse synthetic aperture radar (ISAR) image registration enables the analysis of target dynamics by comparing registered images from different viewpoints. However, it faces significant challenges due to various factors, such as the complex scattering characteristics of the target, limited availability of information, and additive noise in ISAR images. This paper proposes a novel ISAR image registration meth- od based on line features. It integrates information from both dominant scatterers and the target’s outer contour to detect lines. According to the consistency principles of multiple lines in rotation and translation, line features from different ISAR images are matched. Simulta- neously, the results of the feature matching are utilized to guide the parameter configuration for optimizing the image registration process. Comparative experiments illustrate the advantages of the proposed method in both feature extraction and registration feasibility.

      • KCI등재

        Effect of Aspirin on the Expression of Hepatocyte NF-κB and Serum TNF-α in Streptozotocin-Induced Type 2 Diabetic Rats

        Xiaodong Sun,Fang Han,Junling Yi,Lina Han,Ben Wang 대한의학회 2011 Journal of Korean medical science Vol.26 No.6

        Aspirin is a kind of anti-inflammatory drug and may be used to reverse hyperglycemia,hyperinsulinemia, and dyslipidemia by improving insulin resistance. We hypothesized that aspirin improves insulin resistance in type 2 diabetes by inhibiting hepatic nuclear factor kappa-β (NF-κB) activation and serum tumor necrosis factor-α (TNF-α). Adult male Wistar rats were randomly divided into four groups: control, untreated diabetic, diabetic treated with metformin (100 mg /kg/day), and diabetic treated with aspirin (120 mg/kg/day). Diabetes was induced by high-fat feeding and a low dose of streptozotocin (30 mg/kg). After treatment, plasma glucose, insulin, lipids, free fatty acids (FFAs) concentrations and serum TNF-α were determined. The expression of NF-κB in hepatocytes was analyzed by immunohistochemistry and western blot. The results showed administration of aspirin caused no significant lowering in fasting glucose level but significant reduction of hepatic NF-κB expression and serum TNF-α level with improved insulin resistance compared to the diabetic group. The relevant analysis showed positive correlation between the expression of homeostasis model assessment-insulin resistance (HOMA-IR) and NF-κB (r = 0.799, P <0.01); HOMA-IR and serum TNF-α (r = 0.790, P < 0.01). It is concluded that aspirin improves insulin resistance by inhibiting hepatic NF-κB activation and TNF-α level in streptozotocin-induced type 2 diabetic rats.

      • KCI등재

        Phosphodiesterase 4D contributes to angiotensin II-induced abdominal aortic aneurysm through smooth muscle cell apoptosis

        Gao Ran,Guo Wenjun,Fan Tianfei,Pang Junling,Hou Yangfeng,Feng Xiaohang,Li Bolun,Ge Weipeng,Fan Tianhui,Zhang Tiantian,Lu Jiakai,Jing He,Jin Mu,Yan Chen,Wang Jing 생화학분자생물학회 2022 Experimental and molecular medicine Vol.54 No.-

        Abdominal aortic aneurysm (AAA) is a permanent expansion of the abdominal aorta that has a high mortality but limited treatment options. Phosphodiesterase (PDE) 4 family members are cAMP-specific hydrolyzing enzymes and have four isoforms (PDE4A-PDE4D). Several pan-PDE4 inhibitors are used clinically. However, the regulation and function of PDE4 in AAA remain largely unknown. Herein, we showed that PDE4D expression is upregulated in human and angiotensin II-induced mouse AAA tissues using RT-PCR, western blotting, and immunohistochemical staining. Furthermore, smooth muscle cell (SMC)-specific Pde4d knockout mice showed significantly reduced vascular destabilization and AAA development in an experimental AAA model. The PDE4 inhibitor rolipram also suppressed vascular pathogenesis and AAA formation in mice. In addition, PDE4D deficiency inhibited caspase 3 cleavage and SMC apoptosis in vivo and in vitro, as shown by bulk RNA-seq, western blotting, flow cytometry and TUNEL staining. Mechanistic studies revealed that PDE4D promotes apoptosis by suppressing the activation of cAMP-activated protein kinase A (PKA) instead of the exchange protein directly activated by cAMP (Epac). Additionally, the phosphorylation of BCL2-antagonist of cell death (Bad) was reversed by PDE4D siRNA in vitro, which indicates that PDE4D regulates SMC apoptosis via the cAMP-PKA-pBad axis. Overall, these findings indicate that PDE4D upregulation in SMCs plays a causative role in AAA development and suggest that pharmacological inhibition of PDE4 may represent a potential therapeutic strategy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼