RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Predicting the Tensile Strength of Needle-punched Nonwoven Mats Using X-ray Computed Tomography and a Statistical Model

        Jeon, Seung-Yeol,Yu, Woong-Ryeol,Kim, Min Sun,Lee, Joon Seok,Kim, Jong Won THE KOREAN FIBER SOCIETY 2014 FIBERS AND POLYMERS Vol.15 No.6

        As nonwoven mats are randomly oriented fiber assemblies, the tensile strength of nonwoven mats is determined by their microstructural factors, such as fiber orientation, fiber volume fraction, and fiber-fiber contact level. The complex microstructure of nonwoven mats must be reasonably simplified to properly predict their mechanical properties within affordable efforts. In this study, a new parameter, so called contact efficiency, is defined to describe the fiber-fiber contact level of nonwoven mats. Micro X-ray computer tomography (CT) is employed to characterize the microstructure of needle-punched nonwoven mats made of polypropylene short fibers. The fiber orientation and volume fraction are obtained by analyzing 2D sectional CT image of the nonwoven mat, while the contact efficiency is determined from 3D CT image. A statistical model, developed originally for staple yarns, is modified to predict the tensile strength of the nonwoven mat using the microstructural factors obtained from CT analysis. The prediction is then compared with experiments to validate that the current model incorporating the contact efficiency is highly suitable for predicting the tensile strength of nonwoven mats.

      • SCIESCOPUSKCI등재

        Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites

        Nam Sung-Hyun,Netravali Anil N. The Korean Fiber Society 2006 Fibers and polymers Vol.7 No.4

        The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly 'green' composites. SEM micrographs of a longitudinal and cross sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young's modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to $160^{\circ}C$ with no decrease in tensile strength or Young's modulus. However, at temperatures higher than $160^{\circ}C$ the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9 %. These properties make ramie fibers suitable as reinforcement for 'green' composites. Also, the green composites can be fabricated at temperatures up to $160^{\circ}C$ without reducing the fiber properties.

      • SCIESCOPUSKCI등재

        Surface Morphologies and Internal Fine Structures of Bast Fibers

        Wang H. M.,Wang X. The Korean Fiber Society 2005 Fibers and polymers Vol.6 No.1

        Fiber surface morphologies and associated internal structures are closely related to its properties. Unlike other fibers including cotton, bast fibers possess transverse nodes and fissures in cross-sectional and longitudinal directions. Their morphologies and associated internal structures were anatomically examined under the scanning electron microscope. The results showed that the morphologies of the nodes and the fissures of bast fibers varied depending on the construction of the inner fibril cellular layers. The transverse nodes and fissures were formed by the folding and spiralling of the cellular layers during plant growth. The dimensions of nodes and fissures were determined by the dislocations of the cellular layers. There were also many longitudinal fissures in bast fibers. Some deep longitudinal fissures even opened the fiber lumen for a short way along the fiber. In addition, the lumen channel of the bast fibers could be disturbed or disrupted by the nodes and the spi­rals of the internal cellular layers. The existence of the transverse nodes and fissures in the bast fibers could degrade the fiber mechanical properties, whereas the longitudinal fissures may contribute to the very rapid moisture absorption and desorption.

      • SCIESCOPUSKCI등재

        Frictional and Tensile Properties of Conducting Polymer Coated Wool and Alpaca Fibers

        Wang Lijing,Lin Tong,Wang Xungai,Kaynak Akif The Korean Fiber Society 2005 Fibers and polymers Vol.6 No.3

        Wool and alpaca fibers were coated with polypyrrole by vapor-phase polymerisation method. The changes in frictional and tensile properties of the single fibers upon coating with the conductive polymer are presented. Coating a thin layer of polypyrrole on the alpaca and wool fibers results in a significant reduction in the fiber coefficient of friction, as the conducting polymer layer smooths the protruding edges of the fiber scales. It also reduces the directional friction effect of the fibers. Depending on the type of fiber, the coating may slightly enhance the tensile properties of the coated fibers.

      • SCIESCOPUSKCI등재

        Internal Structure and Pigment Granules in Colored Alpaca Fibers

        Wang Huimin,Liu Xin,Wang Xungai The Korean Fiber Society 2005 Fibers and polymers Vol.6 No.3

        Alpaca fibers have some distinct properties such as softness and warmth, which have not been fully understood in combination with the fiber internal structures. In the present investigation, the internal structures of alpaca fibers have been closely examined under the scanning electron microscope (SEM), especially in the longitudinal direction. The results showed that numerous pigment granules reside loosely inside pockets in brown and dark-brown alpaca fibers. These pigment granules were mainly distributed inside the cortical cells, the medullation regions as well as underneath the cuticles. Their size in the brown alpaca fibers was smaller and more uniformly round than in the dark-brown fibers. These granules in colored alpaca fibers loosen the bundle of cortical cells, providing many crannies in the fibers which may contribute to the superior flexibility, warmth and softness of the fibers. Moreover, there are no heavy metal elements found in the granules. The mordant hydrogen peroxide bleaching employed could eliminate the pigment granules and create many nano-volumes for further dyeing of fibers into more attractive colors.

      • SCIESCOPUSKCI등재

        Effect of Impact Force on Tensile Properties and Fiber Splitting of Splittable Bicomponent Hydroentangled Fabrics

        Ndaro, Mbwana Suleiman,Xiangyu, Jin,Ting, Chen,Yu, Chongwen The Korean Fiber Society 2007 Fibers and polymers Vol.8 No.4

        The effect of impact force when using inclined water jets on splittable bicomponents hydroentangled fabrics are investigated focusing on changes in tensile properties and fiber splitting. The results indicated that with increase of impact force, the tensile strength was increased in both machine direction (MD) and crosswise direction (CD). On changing of water jet inclination angle, the tensile strength was the highest at 10 degree followed by 20 degree and the last 0 degree. The highest fiber splitting were observed in pie segment (PA6/PET) followed by island in sea (PA6/COPET) fiber but no fiber splitting was observed for island in sea (PET/COPET) fiber. The impact force in inclined mode of impact, played a great role in improving fiber splitting and tensile properties of hydroentangled nonwoven fabrics. The Scanning Electron Microscope (SEM) photos were used for investigation of fiber splitting by comparing fiber diameter before and after hydroentanglement.

      • SCIESCOPUSKCI등재

        Dry-jet Wet Spinning of Polyhydroxyamide Fibers

        Park, Seung-Koo,Cho, Seo-Hyun,Farris, Richard-John The Korean Fiber Society 2000 Fibers and polymers Vol.1 No.2

        A high molecular weight polyhydroxyamide (PHA) solution in N, N-dimethyl acetamide (DMAc) was prepared from 3, 3'-dihydroxybenzidine and isophthalic chloride (IPC), which was used for spinning PHA fiber. Before spinning, the diffusion property of DMAc into various coagulants was examined. The fiber was well formed in coagulants such as water/ethanol with a composition of 5/5, ethanol, and ethanol/isopropanol with a composition of 7/3 and 5/5. However, the PHA fiber spun in the water/ethanol mixture contained voids. After the fiber spun in ethanol was annealed at over $350^{\circ}C$, the ultimate stress and initial modulus of the fiber increased from 75.5 MPa and 3.22 GPa to 369 MPa and 29.5 GPa, respectively. These properties of the PHA fiber spun by the dry spinning method were also enhanced, attaining 154 MPa and 5.56 Gpa, respectivel.

      • SCIESCOPUSKCI등재

        Dyeing Properties of Nylon 66 Nano Fiber with High Molecular Mass Acid Dyes

        Lee Kwon Sun,Lee Beom Soo,Park Young Hwan,Park Yoon Chul,Kim Yong Min,Jeong Sung Hoon,Kim Sung Dong The Korean Fiber Society 2005 Fibers and polymers Vol.6 No.1

        Research and development of nano fiber products is very active over the world. Physical characteristics and dyeing properties of nylon 66 nano fiber were investigated in this study. X-ray diffraction, DSC, analysis of amino end group, and water absorption were performed to get information concerning physical properties of nano fiber. Nylon 66 nano fiber was dyed with high molecular mass acid dyes. Effects of dyeing temperature, pH of dyeing solution, and concentration of acid dyes on dyeing properties such as rate of dyeing and the extent of exhaustion, were examined and compared to those of regu­lar fiber. It was found that nano fiber adsorbed acid dyes at lower temperature, got rapidly dyed, and its extents of exhaustion at specific dyeing temperature were higher than regular fiber. It was also observed that nano fiber could adsorb a large amount of acid dye without a significant loss in the extent of exhaustion. Washing fastness of the dyed nano fiber was lower by $1/2\~1$ grade, light fastness by 1 grade than the dyed regular fiber.

      • SCIESCOPUSKCI등재

        Effects of In Vitro Degradation on the Weight Loss and Tensile Properties of PLA/LPCL/HPCL Blend Fibers

        Yoon Cheol Soo,Ji Dong Sun The Korean Fiber Society 2005 Fibers and polymers Vol.6 No.1

        PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly ($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly ($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending and spinning for bioab­sorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect of in vitro degra­dation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solu­tion at pH 7.4 and 37$^{\circ}C$ for 1-8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of $5 wt\%, HPCL contents of $35 wt\%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about $93.5\% even at hydrolysis time of 2 weeks.

      • SCIESCOPUSKCI등재

        Correlating the Fineness and Residual Gum Content of Degummed Hemp Fibres

        Beltran, Rafael,Hurren, Christopher J.,Kaynak, Akif,Wang, Xungai The Korean Fiber Society 2002 Fibers and polymers Vol.3 No.4

        It is well known residual gum exists in degummed or rotted hemp fibers. Gum removal results in improvement in fiber fineness and the properties of the resultant hemp yams. However, it is not known what correlation if any exists between the residual gum content in retted hemp fibers and the fiber fineness, described in terms of fiber width in this paper. This study examined the mean width and coefficient of variation (CV) of fiber width of seventeen chemically rotted hemp samples with reference to residual gum content. The mean and CV of fiber width were obtained from an Optical fiber diameter analyser (OFDA 100). The linear regression analysis results show that the mean fiber width is directly proportional to the residual gum content. A slightly weaker linear correlation also exists between the coefficient of variation of fiber width and the residual gum content. The strong linear co-relation between the mean of fiber width and the residual gum content is a significant outcome, since testing for fiber width using the OFDA is a much simpler and quicker process than testing the residual gum content. Scanning Electron Microscopy (SEM) reinforces the OFDA findings. SEM micrographs show a flat ribbon like fiber cross-section hence the term \"fiber width\" is used instead of fiber diameter. Spectral differences in the untreated dry decorticated skin samples and chemically treated and subsequently carded samples indicate delignification. The peaks at $1370cm^{-1}$, $1325cm^{-1}$, $1733cm^{-1}$, and $1600cm^{-1}$ attributed to lignin in the untreated samples are missing from the spectra of the treated samples. The spectra of the treated samples are more amine-dominated with some of the OH character lost.cter lost.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼