RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Production of New Allotetraploid and Autotetraploid Citrus Breeding Parents: Focus on Zipperskin Mandarins

        Grosser, Jude W.,An, Hyun Joo,Calovic, Milica,Lee, Dong H.,Chen, Chunxian,Vasconcellos, Monica,Gmitter, Frederick G. American Society for Horticultural Science 2010 HortScience Vol.45 No.8

        <P>Somatic hybridization through protoplast fusion has proven to be a valuable technique in citrus for producing unique allotetraploid breeding parents that combine elite diploid selections. Many citrus somatic hybrids are now flowering and being used in interploid crosses to generate triploid hybrids that produce seedless fruit, a primary objective of citrus breeding programs. Most of the early somatic hybrids produced for mandarin improvement combined sweet oranges with mandarins, because the performance of sweet oranges in tissue/protoplast culture generally exceeds that of most mandarin selections. However, a high percentage of triploid progeny from interploid crosses using sweet orange + mandarin somatic hybrids as the tetraploid parent produce fruit that are difficult to peel. We report nine new allotetraploid somatic hybrids and five new autotetraploids from somatic fusion experiments involving easy-peel mandarin parents. These tetraploids can be used in interploid crosses to increase the percentage of seedless triploid progeny producing easy-to-peel fruit. Ploidy level of the new tetraploids was determined by flow cytometry and their genetic origin by expressed sequence tag-simple sequence repeat marker analysis.</P>

      • Operator-splitting methods respecting eigenvalue problems for shallow shelf equations with basal drag

        Geiser, Jurgen,Calov, Reinhard Techno-Press 2012 Coupled systems mechanics Vol.1 No.4

        We present different numerical methods for solving the shallow shelf equations with basal drag (SSAB). An alternative approach of splitting the SSAB equation into a Laplacian and diagonal shift operator is discussed with respect to the underlying eigenvalue problem. First, we solve the equations using standard methods. Then, the coupled equations are decomposed into operators for membranes stresses, basal shear stress and driving stress. Applying reasonable parameter values, we demonstrate that the operator of the membrane stresses is much stiffer than the operator of the basal shear stress. Here, we could apply a new splitting method, which alternates between the iteration on the membrane-stress operator and the basal-shear operator, with a more frequent iteration on the operator of the membrane stresses. We show that this splitting accelerates and stabilize the computational performance of the numerical method, although an appropriate choice of the standard method used to solve for all operators in one step speeds up the scheme as well.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼