http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
습식법으로 제조한 수산화아프타이트의 침전과 그 분말에 대한 Ca/P 몰비의 영향
신용규,정형진,김병호 한국세라믹학회 1988 한국세라믹학회지 Vol.25 No.6
Effect of Ca/P mole ratio on the precipitates and powder properties of hydroxyapatite was investigated. Powder and precipitates of hydroxyapatite were synthesized by the reaction of Ca(NO3)2.4H2O and (NH4)2 HPO4 solutions at room temperature. The pH value and compositions (Ca/P mole ratio) in starting solutions were 11 and 1.64-1.79(or 1.85), respectively. Rodlike hydroxyapatite precipitates were agglomerated together. The average agglomerated particle size was ranged from 2-8${\mu}{\textrm}{m}$. Among compositions, the minimum agglomerated particle size was shown at the Ca/P mole ratio 1.75. CO2 was contained in hydroxyapatite powders and these ultrafine powders had poor crystallinity. The specific surface area and specific total pore volume of hydroxyapatite powders were 104-137$m^2$/g and 0.396-0.467cc/g, respectively. When the Ca/P mole ratio was 1.75, these values were the maximum. And water content increased with the Ca/P mole ratio(Ca/P mole ratio>1.67). In most cases, hydroxyapaite was stable to 130$0^{\circ}C$. However, in the case of Ca/P mole ratio 1.64, hydroxyapatite was changed to $\alpha$-whitlockite at 120$0^{\circ}C$.
습식법으로 제조한 수산화아파타이트 분말의 소결과 그 미세구조에 미치는 Ca/P몰비의 영향
신용규,정형진,김병호 한국세라믹학회 1989 한국세라믹학회지 Vol.26 No.1
Hydroxyapatite powders were syntehsized by the reaction of Ca(NO3)2.4H2O and (NH4)2HPO4 in aqueous solution. The effect of the Ca/P mole ratio in the starting solution on the sintering of the powders and its microstructure was studied. When the Ca/P mole ratio in the starting solution was 1.69, the relative density of the sintered bodies was more than 95%. The sinterability was decreased as the Ca/P mole ratio in the starting solution was increased (Ca/P mole ratio >1.67). Hydroxyapatite sintered bodies obtained from the Ca/P mole ratio=1.69 had very excellent bending strength. The best bending strength was obtained at 110$0^{\circ}C$ and its value was 1220kg/$\textrm{cm}^2$. The average grain size was 0.277${\mu}{\textrm}{m}$. Most of sintered bodies were almost shown 100% hydroxyapatite phase. However, in case of the Ca/P mole ratio=1.64 hydroxyapatite was decomposed to $\alpha$-whitlockite above 120$0^{\circ}C$.
신용규,이정수,이광수,Shin, Yong-Kyoo,Lee, Chung-Soo,Lee, Kwang-Soo The Korean Society of Pharmacology 1988 대한약리학잡지 Vol.24 No.2
소듐에 의한 칼슘의 유리는 verapamil, TTX, TEA의 영향을 받지 않았다. $100\;{\mu}M\;Cd6{++}$과 $Zn^{++}$은 소듐에 의한 칼슘 유출을 유의하게 억제하였다. $Cd^{++}$은 $Ki\;100\;{\mu}M\;Cd6{++}$로써 비상경적으로 소듐-칼슘 교환이동을 억제하였다. $Cd^{++}$은 SH기의 산화를 초래하였으나, $Zn^{++}$은 거의 영향을 나타내지 않았다. $Cd^{++}$과 $Zn^{++}$은 $Na^+-Ca^{++}$ ATPase를 효과적으로 억제하였으나 $Ca^{++}-Mg^{++}$ ATPase를 약간 억제시켰다. Carbonyl cyanide chlorophenylhydrazone, 2,4-dinitrophenol과 sodium arsenate는 소듐에 의한 칼슘 유리를 촉진하였다. Dibucaine과 oligomycin은 소듐에 의한 칼슘의 유리를 약간 억제하였으나, 이에 반하여 ouabain은 약간 촉진하였다. 이상의 실험 결과로부터 신경 세포막에서의 소듐-칼슘 교환은 이온 통로를 통하여 이루어지지 않을 것으로 시사되었다. 소듐-칼슘 교환이동은 $Cd^{++}$에 민감하게 억제되고 이 이동기전에 synaptosome막의 SH기가 관여할 것으로 사료되었다. 또한 소듐-칼슘 교환은 세포막 단백질 성분의 인산화 반응 동안에 억압될 것으로 추정되었다. Verapamil, tetrodotoxin and tetraethylammonium chloride in the stated amount did not affect the $Na^{++}$ induced $Ca^{++}$ release. $Cd^{++}$ and $Zn^{++}$ significantly inhibited the $Na^{++}$ induced $Ca^{++}$ release. $Mn^{++}$ also inhibited $Na^+-Ca^{++}$ exchange. $Cd^{++}$ inhibited $Na^+-Ca^{++}$ exchange noncompetitively with an apparent inhibition constant (Ki) of $100\;{\mu}M$. $Cd^{++}$ caused loss of sulfhydryl group, whereas $Zn^{++}$ did not show any significant effect. $Cd^{++}$ and $Zn^{++}$ effectively inhibited $Na^+-Ca^{++}$ ATPase and slightly inhibited $Ca^{++}-Mg^{++}$ ATPase. Carbonyl cyanide chlorophenylhydrazone, 2,4-dinitrophenol and sodium arsenate stimulated the $Na^{++}$ induced $Ca^{++}$ release. Dibucaine and oligomycin slightly inhibited it. The results suggest that the $Na^+-Ca^{++}$ exchange on the synaptosomal plasma membrane may be not accomplished by ion channels. The $Na^+-Ca^{++}$ exchange is sensitively inhibited by $Cd^{++}$ and this transport process appears to be partially regulated by sulfhydryl groups of the synaptosomal plasma membrane. It is also postulated that $Na^+-Ca^{++}$ exchange is suppressed during the phosphorylation reaction of protein component on the neuronal membrane.
신용규,이정수,이광수,Shin Yong-Kyoo,Lee Chung-Soo,Lee Kwang-Soo The Korean Society of Pharmacology 1995 대한약리학잡지 Vol.31 No.1
A number of tricyclic antidepressants appear to have inhibitory action on calmodulin. Although amitriptyline, imipramine and doxepine have been shown to inhibit calcium uptake, oxidative phosphorylation and ATPase activities, effects of amitriptyline, imipramine and doxepine on functional responses of human neutrophils have not been elucidated. In this study, effects amitriptyline, imipramine and doxepine on superoxide and hydrogen peroxide generation, myeloperoxidase release, leukocriene B4 formation and intracellular calcium level were investigated. Superoxide and hydrogen peroxide production in heat aggregated IgG-activated neutrophils were inhibited by amitriptyline, imipramine and doxepine. EDTA, EGTA, verapamil and bepredil inhibited heat aggregated IgG-induced superoxide production. Chlorpromazine, trifluoperazine, staurosporine and H-7 also inhibited it. PMA-induced superoxide production was inhibited by amitriptyline, imipramine, doxepine, chlorpromazine and H-7. Amitriptyline, imipramine, chlorpromazine and trifluoperazine inhibited the myeloperoxidase release by heat aggregated IgG. Productions of $LTB_4$, and 5-HETE in heat aggregated IgG-activated neutrophils were inhibited by amitriptyline, imipramine and doxepine. In neutrophils, elevation of intracellular calcium induced by heat aggregated IgG was inhibited by amitriptyline, imipramine, doxepine, chlorpromazine and EGTA, while verapamil slightly inhibited increase of intracellular calcium and H-7 did not inhibit it. These results suggest that the inhibitory effect of amitriptyline, imipramine and doxepine on respiratory burst, myeloperoxidase release and LTB4 production in heat aggregated IgG-activated neutrophils appears to be ascribed to the inhibition of calcium mobilization, calmodulin and protein kinase C.