RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Comprehensive evaluation of various pyrolysis reaction mechanisms for pyrolysis process simulation

        Choi, Myung Kyu,Park, Hoon Chae,Choi, Hang Seok Elsevier 2018 CHEMICAL ENGINEERING AND PROCESSING Vol.130 No.-

        <P><B>Abstract</B></P> <P>In recent years, an acceleration of global warming and various environmental pollution problems has been observed due to the increase in energy demand. Biomass, which has several advantages over more typical sources, is very popular as a green energy source. This study focuses on process modeling and analysis of biomass fast pyrolysis. The fast pyrolysis reaction mechanisms, proposed by previous researchers, are applied to the modeling of a fast pyrolysis reactor. This process analysis is performed according to operating conditions such as the reaction temperature, residence time, type of biomass and reactor type. To evaluate these results, the results of the process analysis of other researchers and the GC/MS (gas chromatograph-mass spectrometry) data of fast pyrolysis experiment are compared.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Modeling of fast pyrolysis process for biomass is studied. </LI> <LI> The fast pyrolysis reaction mechanisms are applied to the modeling of reactor. </LI> <LI> To evaluate reaction mechanism, fast pyrolysis experiment is compared. </LI> <LI> The mechanism including secondary cracking of tar is similar to experimental data. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        은행잎 바이오매스로부터 급속 열분해를 통한 바이오-오일 생산 및 특성 연구

        황인준,전재락,김진수,김승수 한국청정기술학회 2023 청정기술 Vol.29 No.3

        은행잎은 자체에 존재하는 ginkgolide A, B, C, J 및 bilobalide의 강한 살충작용으로 인해 제대로 분해가 진행되지 않아그대로 방치할 시 사고를 유발 할 수 있는 폐기물 바이오매스이다. 은행잎 바이오매스는 적절한 기술 적용을 통해 연료나 화학물질로 전환할 수 있다. 본 연구에서는 은행잎의 급속 열분해 반응과정에서 열분해 온도, 최소 유동화 속도, 샘플의 크기를 변화 시키면서 생성물 특성에 대한 연구를 수행하였다. 열분해 온도 400~550℃, 최소 유동화 속도 2.0~4.0 Umf, 그리고 바이오매스 샘플의 크기에 변화 따라 생성물의 수율과 특성의 변화를 확인하였다. 급속 열분해는 기포 유동층 반응기에서 모래를 층 물질로 사용하여 400~500℃ 구간에서 진행하였다. 열분해 후 액상 생성물의 수율은 온도에 따라 33.66~40.01 wt%였으며, 기상 생성물 중 CO2와 CO의 선택성이 높았고, 온도 증가에 따라 CO2의 선택성은 낮아지고CO의 선택성은 높아졌다. 반응 온도 450℃, 유동화 속도 3.0×Umf, 0.43~0.71 mm 입자 크기에서 급속 열분해를 진행한결과 40.01 wt%의 바이오-오일 수율을 얻었으며, 30.17 MJ/kg의 고위발열량을 나타냈다. 생성된 바이오-오일을 GC-MS 를 통해 분석해본 결과 다양한 페놀 화합물 및 벤젠 유도체가 생성된 것을 확인하였다. 본 연구에서 은행잎 폐기물 바이오매스의 처리와 함께 활용 가능성을 급속 열분해를 통해 확인하였다. Ginkgo leaves are considered waste biomass and can cause problems due to the strong insecticidal actions of ginkgolide A, B, C, and J and bilobalide. However, Ginkgo leaf biomass has high organic matter content that can be converted into fuels and chemicals if suitable technologies can be developed. In this study, the effect of pyrolysis temperature, minimum fluidized velocity, and Ginkgo leaf size on product yields and product properties were systematically analyzed. Fast pyrolysis was conducted in a bubbling fluidized bed reactor at 400 to 550℃ using silica sand as a bed material. The yield of pyrolysis liquids ranged from 33.66 to 40.01 wt%. The CO2 and CO contents were relatively high compared to light hydrocarbon gases because of decarboxylation and decarbonylation during pyrolysis. The CO content increased with the pyrolysis temperature while the CO2 content decreased. When the experiment was conducted at 450℃ with a 3.0×Umf fluidized velocity and a 0.43 to 0.71 mm particle size, the yield was 40.01 wt% and there was a heating value of 30.17 MJ/kg, respectively. The production of various phenol compounds and benzene derivatives in the bio-oil, which contains the high value products, was identified using GC-MS. This study demonstrated that fast pyrolysis is very robust and can be used for converting Ginkgo leaves into fuels and thus has the potential of becoming a method for waste recycling.

      • KCI등재

        순환유동층 반응기내 바이오매스의 급속열분해 공정해석에 관한 수치해석적 연구

        이유리,박훈채,최명규,최항석 한국폐기물자원순환학회 2017 한국폐기물자원순환학회지 Vol.34 No.5

        The development of renewable energy is currently strongly required to address environmental problems such as global warming. In particular, biomass is highlighted due to its advantages. When using biomass as an energy source, the conversion process is essential. Fast pyrolysis, which is a thermochemical conversion method, is a known method of producing bio-oil. Therefore, various studies were conducted with fast pyrolysis. Most studies were conducted under a lab-scale process. Hence, scaling up is required for commercialization. However, it is difficult to find studies that address the process analysis, even though this is essential for developing a scaled-up plant. Hence, the present study carries out the process analysis of biomass pyrolysis. The fast pyrolysis system includes a biomass feeder, fast pyrolyzer, cyclone, condenser, and electrostatic precipitator (ESP). A two-stage, semi-global reaction mechanism was applied to simulate the fast pyrolysis reaction and a circulating fluidized bed reactor was selected as the fast pyrolyzer. All the equipment in the process was modeled based on heat and mass balance equations. In this study, process analysis was conducted with various reaction temperatures and residence times. The two-stage, semi-global reaction mechanism for circulating fluidized-bed reactor can be applied to simulate a scaled-up plant.

      • KCI등재

        백합나무 바이오오일에서 회수한 열분해리그닌 (Pyrolytic Lignin)의 화학적 특성

        김광호 ( Kwang Ho Kim ),문선주 ( Sun Joo Moon ),김태승 ( Tai Seung Kim ),이수민 ( Soo Min Lee ),여환명 ( Hwan Myeong Yeo ),최인규 ( In Gyu Choi ),최준원 ( Joon Weon Choi ) 한국목재공학회 2011 목재공학 Vol.39 No.1

        열분해 온도와 체류시간을 달리하며 급속 열분해 공정을 통해 얻어진 백합나무 바이오오일로부터 분말 형태의 열분해리그닌(pyrolytic lignin)을 회수하였다. 바이오오일을 구성하고 있는 열분해리그닌의 특성을 이해하고 급속 열분해 실험 조건-반응 온도, 체류시긴-이 열분해 과정에서 리그닌에 미치는 영향을 살펴보기 위해 수율을 비롯한 다양한 화학적, 구조적 분석을 수행하였다. 열분해 온도가 증가하고, 체류시간이 줄어들수록 바이오오일로부터 회수되는 열분해리그닌의 수율은 증가하였다. 열분해리그닌의 분자량은 백합나무 MWL (milled wood lignin)에 비해 1/10 수준인 약 1.200mol/g로 측정되었다. 열분해리그닌 내 포함된 작용기 함량과 13C NMR 분석을 통해 바이오매스가 열분해되는 동안 탈메톡실화 반응과 리그닌의 propane side chain 분해 반응이 우세하게 일어난다는 사실을 확인하였다. Pyrolytic lignin was obtained from biooil produced with yellow poplar wood. Fast pyrolysis was performed under various temperature ranges and residence times using fluidized bed type reactor. Several analytical methods were adopted to characterize the structure of pyrolytic lignin as well as the effect of pyrolysis temperature and residence time on the modification of the lignin. The yield of pyrolytic lignin increased as increasing pyrolysis temperature and decreasing residence time of pyrolysis products. The molecular weight of pyrolytic lignin determined by gel permeation chromatography (GPC) was approximately 1,200mol/g, which was approximately a tenth of milled wood lignin(MWL) purified from the same woody biomass. Based on analytical data, demethoxylation and side chain cleavage reaction were dominantly occurred during fast pyrolysis.

      • KCI등재

        기포 유동층 반응기에서 굴참나무의 열분해반응 특성 연구

        임동현 ( Dong Hyeon Lim ),심재욱 ( Jae Wook Sim ),김승수 ( Seung Soo Kim ),김진수 ( Jinsoo Kim ) 한국화학공학회 2016 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.54 No.5

        바이오매스는 대체 에너지원으로서 재생가능하고 전 세계적으로 고르게 분포하고 있으며, 친환경적이고 탄소중립적 이어서 많은 관심을 받고 있다. 굴참나무를 대상으로 바이오에너지 생산의 효용성을 알아보기 위해 기포 유동층 반응기를 이용하여 급속 열분해반응 특성 연구를 수행하였다. 반응 온도에 변화에 따른 생성물의 수율 변화를 확인하기 위해 400~550 oC의 온도범위에서 급속 열분해반응 실험을 진행하였고, 이때 바이오-오일의 수율은 36.98~39.14 wt%, 가스의 수율은 33.40~36.96 wt%의 값을 나타내었다. 바이오-오일의 발열량은 500 oC, 3.0×Umf 조건에서 20.18 MJ/kg을 나타내었다. 생성된 열분해 가스의 주 생성물은 CO2, CO 및 CH4이며 CO2의 선택성이 37.16~50.94 mol%로 가장 높았다. 바이오-오일은 푸르푸랄, 페놀과 이들의 유도체인 1-hydroxy-2-propanone, 2-methoxy-phenol, 1,2-benzendiol, 2,6-dimethoxy-phenol에 대한 높은 선택성을 가지고 있었다. Biomass has been concerned as one of the alternative energy resources because it is renewable, abundant worldwide, eco-friendly, and carbon neutral. Quercus variabilis has been studied to understand pyrolysis reaction characteristics, and to evaluate the efficiency of bio-energy production from fast pyrolysis. Quercus variabilis were fast pyrolyzed in a bubbling fluidized bed reactor at various reaction conditions. The effects of pyrolysis temperature between 400 oC and 550 oC on product yields were investigated. The yield of bio-oil was changed between 36.98 w % and 39.14 wt%, and those of gas yield was 33.40 and 36.96 wt% with increasing reaction temperature. The higher heating value (HHV) of bio-oil at 500 oC (3.0×Umf) was 20.18 MJ/kg. The gas compositions were similar for all reaction conditions such as CO, CO2 and CH4, and CO2 selectivity was the highest (37.16~50.94 mol%). The bio-oil has high selectivities for furfural, phenol and their derivatives such as 1-hydroxy-2-propanone, 2-methoxy-phenol, 1,2-benzendiol, 2,6-dimethoxy-phenol.

      • 1P-340 Optimizing conditions for catalytic fast pyrolysis of biomass using Pt/TiO<sub>2</sub>

        오신영,( Calvin Mukarakate ),최준원 한국공업화학회 2017 한국공업화학회 연구논문 초록집 Vol.2017 No.1

        Catalytic fast pyrolysis (CFP) of loblolly pine with atmospheric hydrogen pressure was investigated in a lab-scale laminar entrained flow reactor (LEFR) vapor phase upgrading system. The effects of vapor phase upgrading temperature and hydrogen partial pressure has been studied using the Pt/TiO<sub>2</sub>. Experiments have been carried out under following conditions: 380-450°C; 50-85% H<sub>2</sub>; biomass to catalyst ratio of 3:1. The 85% of hydrogen at 400°C favored organic oil quality (HHV: 40.97 MJ/kg; H/Ceff: 1.05). The catalyst was reused after regeneration and reduction. The organic oil and aqueous phase were characterized and compared with the pyrolysis oil to determine the effect of catalytic fast pyrolysis. The organic oil contained methyl phenols with some ketones, and aromatic hydrocarbons. Compared with the compounds in liquid products, the catalyst reused 21 times with regeneration and reduction process, and catalyst activity was differed with different reduction conditions.

      • KCI등재후보

        바이오매스로부터 급속 열분해를 통한 바이오오일의 생산기술 연구동향

        김재곤,박조용,임의순,하종한 한국유화학회 2014 한국응용과학기술학회지 Vol.31 No.3

        본 논문에서는 바이오매스로부터 급속열분해를 통해 난방용, 발전용 및 수송용 연료로 사용하 기 위해 바이오오일을 생산하는 기술개발 현황을 나타내었다. 바이오매스를 작은 규모의 액체연료로 전 환하기 위해 가장 효율적인 방법 중 하나는 급속열분해이다. 급속열분해를 통한 바이오오일은 450 ℃ ~ 600 ℃ 온도에서 바이오매스가 신속히 열분해 되어 증기 급냉를 위해 외부 산소가 없는 조건에서 생산 된다. 이 바이오오일은 최초 건조 바이오매스 기준 최대 75 무게%까지 생산할 수 있지만, 일반적으로 60-75 무게% 수준이 적합하다. 본 연구에서는 바이오매스의 원료특성, 바이오오일 생산원리, 바이오오 일의 특성 및 활용분야에 대한 최근의 개발현황을 살펴보았다. The paper provides a review on bio-oil production technology from biomass by using fast pyrolysis to use heating fuel, power fuel and transport fuel. One of the most promising methods for a small scale conversion of biomass into liquid fuels is fast pyrolysis. In fast pyrolysis, bio-oil is produced by rapidly heating biomass to intermediate temperature (450 ~ 600 ℃) in the absence of any external oxygen followed by rapid quenching of the resulting vapor. Bio-oil can be produced in weight yield maximum 75 wt% of the original dry biomass and bio-oils typically contain 60-75% of the initial energy of the biomass. In this study, it is described focusing on the characterization of feedstock, production principle of bio-oil, bio-oil’s property and it’s application sector.

      • Bio-oil production from macro-algae Sargassum sp. in a bubbling fluidized bed reactor

        ( Ly Hoang Vu ),김승수,김진수,우희철 한국공업화학회 2016 한국공업화학회 연구논문 초록집 Vol.2016 No.1

        Sargassum sp. is a kind of macro-algae, Sargassum sp. can be converted into bio-oil, gas, and char through fast pyrolysis. In this study, the fast pyrolysis of Sargassum sp. was performed in a bubbling fluidized-bed reactor under various reaction conditions to investigate the effect of these parameters on the product yields and the qualities of bio-oil. The highest yield of bio-oil was 36.26%, obtained at a pyrolysis temperature of 450°C with fluidization velocity of 4.0 x Umf. The gas compositions included CO, CO<sub>2</sub>, H<sub>2</sub>, and C1~C4 hydrocarbons, but different concentration depending on reaction temperature. The bio-oil showed high selectivity for levoglucosan, di-anhydromannitol, pyridinol, derivatives ketone and small amounts of phenolic species. The <sup>13</sup>C NMR showed that shorter aliphatic carbons and lower molecular weight compounds of carbohydate, ketone, and their derivatives were generated during pyrolysis at higher temperatures due to secondary decomposition reactions.

      • KCI등재

        촉매열분해를 이용한 백합나무 바이오오일의 연료 특성

        채광석(Kwang Seok Chea),정한섭(Han Seob Jeong),안병준(Byoung Jun Ahn),이재정(Jae Jung Lee),주영민(Young Min Ju),이수민(Soo Min Lee) 한국유화학회 2017 한국응용과학기술학회지 Vol.34 No.1

        바이오오일은 고품질 화학물질로 이용이 가능하며 차세대 탄화수소 연료와 석유정제업 공급원료로 사용할 수 있기 때문에 촉망받는 신재생에너지의 하나로 상당한 관심을 받고 있다. 또한 제올라이트는 급속열분해 과정에서 크래킹 반응을 효과적으로 촉진시켜 탈산소 반응을 증가 시키고 탄화수소가 많은 안정된 바이오오일을 만든다. 그래서 본 연구에서는 백합나무 바이오오일 품질개선을 위해 촉매열분해(Control, Blackcoal, Whitecoal, ZeoliteY 및 ZSM-5)를 적용하여 특성을 조사하였다. 바이오오일의 특성 변화를 알아보기 위하여 0.3~1.4 mm 크기의 백합나무 시료 500 g을 465℃에서 1.6초 동안 촉매열분해하여 바이오오일을 제조하였다. 촉매 조건 상태에서 바이오오일의 수율은 Control(54.0%)과 비교하여 Blackcoal(56.2%)를 제외하면, Whitecoal(53.5%), ZeoliteY (51.4%), 및 ZSM-5(52.0%)로 모두 감소했다. 수분 함량이 Control(37.4%)에서 촉매 처리후 37.4~45.2%로 증가함에 따라 발열량((High heating value)은 감소했다. 그러나 다른 다른 바이오오일 특성은 개선되었다. 촉매 적용 결과 바이오오일의 회분과 전산가(TAN)가 감소했고, 특히 수송연료로 중요한 특성인 점도는 Control cP(6,933) 에서 2,578 ~ 4,627 cP로 감소했다. 또한 ZeoliteY는 방향족탄화수소를 생산하고 점도를 개선시키는데 가장 효과적이였다. Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3∼1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at 465℃ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.

      • KCI등재

        커피박 열분해유를 연료로 사용하는 디젤 발전기의 연소 및 배출물 특성에 관한 연구

        박준하,이석환,강건용,이진욱 한국수소및신에너지학회 2019 한국수소 및 신에너지학회논문집 Vol.30 No.6

        Due to the depletion of fossil fuels and environmental pollution, demand for alternative energy is gradually increasing. Among the various methods, a method to convert biomass into alternative fuel has been proposed. The bio-fuel obtained from biomass through pyrolysis process is called pyrolysis oil (PO) or bio-oil. Because PO is difficult to use directly in conventional engines due to its poor fuel properties, various methods have been proposed to upgrade pyrolysis-oil. The simplest approach is to mix it with conventional fossil fuels. However, due to their different polarity of PO and fossil fuel, direct mixing is impossible. To resolve this problem, emulsifi- cation of two fuels with a proper surfactant was proposed, but it costs additional time and cost. Alternatively, the use of alcohol fuels as an organic solvent significantly improve the fuel properties such as fuel stability, calorific value and viscosity. In this study, blends of diesel, n-butanol, and coffee ground pyrolysis oil (CGPO) which is one of the promising PO, was applied to diesel generator. Combustion and emissions characteristics of blended fuels were investigated un- der the entire load range. Experimental results show that ignition del- ay is similar to that of diesel at high load. Although, hydrocarbon and carbon monoxide emissions are comparable to diesel, significant reduction of nitrogen oxides and particulate matter emissions were observed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼