RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Evaluation of Rejuvenator Influence on Foamed Asphalt Mixture Using 100 % Reclaimed Asphalt Pavement (RAP)

        Sungun Kim,M. Myung Jeong,Junan Shen,Kwang W. Kim 한국도로학회 2018 한국도로학회 학술대회 발표논문 초록집 Vol.2018 No.05

        The aged asphalt binder included in RAP due to the oxidative aging, repeated vehicle load, climate process affects to the recycled asphalt mixture property and performance (stripping, port hole and premature cracking initiation) after paving. The rejuvenator commonly is used to recover the aged binder in hot mix asphalt (HMA) containing RAP; the effect of rejuvenator in HMA had been proven according to many studies for over the past several decades. Also, there are many methods for using RAP in asphalt mixture in aspects of HMA, cold asphalt mixture (CMA) and worm mix asphalt mixture (WMA), and a foamed asphalt mixture is one of them. Employing the foamed asphalt manufacturing technology, the content of RAP in recycled asphalt mixture can be increased more. The objectives of this study are to evaluate of rejuvenator influence on foamed asphalt mixture using 100% RAP based on strength change of test sample and stiffness change of recovered binder from RAP and specimen. As the results, when rejuvenator was added to make foamed asphalt mixture, MS and ITS values decreased clearly as compared with the foamed asphalt mixture without rejuvenator use. The use of rejuvenator up to 6% showed a tendency of the decrease of strength and stability remarkably. The use of rejuvenator over 6% did not decrease the strength and stability. DSR test results, the use of rejuvenator in making a foamed asphalt mixture using 100% RAP showed a recovery effect of the foamed asphalt mixture. And recovered binder from the specimen that was made adding the 6, 12 and 18% rejuvenator showed lower stiffness obviously compared to the recovered binder from RAP adding same dosage of rejuvenator.

      • KCI등재

        고탄성 수밀성 아스팔트 포장 재료 개발

        김부일 한국도로학회 2019 한국도로학회논문집 Vol.21 No.4

        PURPOSES : This study is aimed at developing an asphalt pavement material with high elasticity and watertight through mix design and laboratory tests. METHODS: High elastic (HE) asphalt modifier blended of thermoplastic elastomer, naphthene oil, mineral fiber and organic vulcanization accelerator was developed. Mix design was done to determine the aggregate gradation and optimum asphalt content for making high elastic and watertight asphalt mixture. Performance grade test of HE-modified asphalt binder as well as asphalt mixture tests, which include the tensile strength ratio test, Hamburg wheel tracking test, third-scale model mobile loading simulator(MMLS-3) test, four-point flexural fatigue test, and Texas reflection crack test were conducted to evaluate the characteristics of the HE-modified asphalt mixture. RESULTS: 7.7% optimum binder content was determined through the mix design, which met the quality criteria of Marshall asphalt mixture. The binder test indicated that the grade of the HE-modified asphalt was PG76-28. The results of the mixture tests indicated a tensile strength ratio of 0.92 and a rut depth of 6.2 mm at 20,000 cycles of Hamburg Wheel-Tracking Test. The asphalt mixture test also showed that the rut depth of HE-modified mixture was 39% less than that of Guss asphalt mixture. The crack resistance of the HE-modified mixture was 1.65 times higher than that of the Guss asphalt mixture from the Texas reflection crack test results. CONCLUSIONS: It can therefore be reasonable that HE-modified asphalt mixture is used as an intermediate layer in the asphalt overlay on concrete pavements. Additionally, the HE-modified asphalt mixture can be used for the asphalt pavement materials with high performance and watertight.

      • KCI등재

        한국형 기포 아스팔트 혼합물의 품질 평가에 관한 기초연구

        강성일,이강훈,김용주,이재준 한국도로학회 2020 한국도로학회논문집 Vol.22 No.6

        PURPOSES : This paper presents a quality evaluation of Korean foamed asphalt, which uses the maximum expansion ratio and half-life method. The maximum expansion ratio and half-life method are used to determine the optimum water content to produce a foamed asphalt mixture. The foamed asphalt mixture according to determine an optimum water content with this method; the mixture quality was compared with hot mix asphalt mixture. METHODS : For the foamed asphalt mixed design, the water content was determined in addition to the Marshall mixing design method. The water content was determined using the ratio of the maximum to minimum volume and the time for the volume to decrease to half of the maximum volume. We conducted stability, indirect tensile strength, tensile strength ratio, dynamic immersion, and absorption rate tests to compare the foamed and hot mixed asphalt mixtures. RESULTS : The foam asphalt mixture exhibited less performance reduction due to temperature change than the hot mixed asphalt mixture. Most of the two mixture types exhibited similar performance. In addition, both mixtures should use an anti-stripping agent to improve water resistance. CONCLUSIONS : As a result of the laboratory test, the foamed asphalt mixture was able to ensure a similar performance to the hot-mixed asphalt mixture.

      • KCI등재

        Overlay Tester를 이용한 그리드 보강 아스팔트 포장의 반사균열 저항성 평가

        유병수,서우진,김조순,박대욱 한국도로학회 2016 한국도로학회논문집 Vol.18 No.1

        PURPOSES: Reflection cracking has been one of the major causes of distress when asphalt pavement is laid on top of concrete pavement. This study evaluated the reflection cracking resistance of asphalt mixtures reinforced with asphalt embedded glass fiber and carbon fiber using a Texas Transportation Institute (TTI) overlay tester. METHODS : Different asphalt mixtures such as polymer-modified mastic asphalt (PSMA) and a dense graded asphalt mixture were reinforced with asphalt-embedded carbon fiber and glass fiber. For comparison purposes, two PSMA asphalt mixtures and one dense graded asphalt mixture were evaluated without fiber reinforcement. Two different overlay test modes, the repeated overlay test (R-OT) and monotonic overlay test (M-OT), were used to evaluate the reflection cracking resistance of asphalt mixtures at 0 ℃. In the R-OT test, the number of repeated load when the specimen failed was obtained. In the M-OT test, the tensile strength at the peak load and tensile strain were obtained. RESULTS : As expected, the fiber-reinforced asphalt mixture showed a higher reflection cracking resistance than the conventional nonreinforced asphalt mixtures based on the R-OT test and M-OT test. The dense graded asphalt mixture showed the least reflection cracking resistance and less resistance than the PSMA. CONCLUSIONS: The TTI overlay tester could be used to differentiate the reflection cracking resistance values of asphalt mixtures. Based on the R-OT and M-OT results, the carbon-fiber-reinforced asphalt mixture showed the highest reflection cracking resistance among the nonreinforced asphalt mixtures and glass-fiber-reinforced asphalt mixture.

      • KCI등재

        Overlay Tester를 이용한 그리드 보강 아스팔트 포장의 반사균열 저항성 평가

        유병수,서우진,김조순,박대욱 한국도로학회 2016 한국도로학회논문집 Vol.18 No.1

        PURPOSES: Reflection cracking has been one of the major causes of distress when asphalt pavement is laid on top of concrete pavement. This study evaluated the reflection cracking resistance of asphalt mixtures reinforced with asphalt embedded glass fiber and carbon fiber using a Texas Transportation Institute (TTI) overlay tester. METHODS : Different asphalt mixtures such as polymer-modified mastic asphalt (PSMA) and a dense graded asphalt mixture were reinforced with asphalt-embedded carbon fiber and glass fiber. For comparison purposes, two PSMA asphalt mixtures and one dense graded asphalt mixture were evaluated without fiber reinforcement. Two different overlay test modes, the repeated overlay test (R-OT) and monotonic overlay test (M-OT), were used to evaluate the reflection cracking resistance of asphalt mixtures at 0 ℃. In the R-OT test, the number of repeated load when the specimen failed was obtained. In the M-OT test, the tensile strength at the peak load and tensile strain were obtained. RESULTS : As expected, the fiber-reinforced asphalt mixture showed a higher reflection cracking resistance than the conventional nonreinforced asphalt mixtures based on the R-OT test and M-OT test. The dense graded asphalt mixture showed the least reflection cracking resistance and less resistance than the PSMA. CONCLUSIONS: The TTI overlay tester could be used to differentiate the reflection cracking resistance values of asphalt mixtures. Based on the R-OT and M-OT results, the carbon-fiber-reinforced asphalt mixture showed the highest reflection cracking resistance among the nonreinforced asphalt mixtures and glass-fiber-reinforced asphalt mixture.

      • KCI등재

        Effect of Double Recycled Reclaimed Asphalt Pavement (DRRAP) on Low-temperature Performance of Asphalt Mixture

        Ki Hoon Moon,Oh Sun Kwon,Mun Jin Cho,Augusto Cannone Falchetto 한국도로학회 2018 한국도로학회논문집 Vol.20 No.6

        PURPOSES: Using recyclable materials in asphalt pavement industry is one of the essential tasks not only for saving construction budgets but also for mitigating environmental pollutions. Over the past decades, several efforts have been made by road maintenance agencies to incorporate various recyclable materials into virgin asphalt paving mixtures. As a result, reclaimed asphalt pavement (RAP), which consists of old pavement material was selected as one of most widely used recyclable materials. In this paper, the effects of using different amounts of single-recycled RAP (SRRAP) and double-recycled RAP (DRRAP) on the low-temperature characteristics of asphalt mixtures were investigated. METHODS: To evaluate the low-temperature characteristics of SRRAP and DRRAP mixtures, two experiments, the bending beam mixture creep test and semicircular bending fracture test were performed. The experimental parameters: creep stiffness, m-value, thermal stress, critical cracking temperature, fracture energy, and fracture toughness were computed then compared. RESULTS : RAP mixtures (SRRAP or DRRAP) showed lower mechanical performance compared with conventional asphalt mixtures. The differences became distinct with increased RAP addition. However, the performance differences between SRRAP and DRRAP mixtures were not significant in all cases, which indicate the possible application of re-recycling technology (DRRAP) in the asphalt pavement industry. CONCLUSIONS : The addition of RAP to virgin asphalt can mitigate low-temperature performance despite the improvement in fracture performance observed in some cases. Therefore, using RAP (SRRAP or DRRAP) mixtures on inter or sublayer construction, but not on the surface layer, is recommended. Moreover, the possibility of applying double-recycling technology in asphalt pavement industry can be introduced in this study because not significant performance differences were found between SRRAP and DRRAP mixtures especially at low temperature.

      • KCI등재

        교면 포장용 배수성 아스팔트 혼합물의 실내 공용 특성에 관한 비교 연구

        김제원,안덕순,이현종,황성도 한국도로학회 2020 한국도로학회논문집 Vol.22 No.6

        PURPOSES : The objective of this study is to address various problems, such as an increase in material cost and premature failure (e.g., cracks and potholes) of porous pavements, and to develop multifunctional asphalt and asphalt mixtures to ensure the long-term commonality of porous asphalt pavements. METHODS : A basic quality test of two types of porous asphalt mixtures was performed. One type consisted of the existing porous asphalt mixture, using domestically presented grading, and the other a porous asphalt mixture using high-viscosity modified asphalt with enhanced low-temperature properties, aimed at improving strain resistance and developed by applying the grading suggested by the Federal Highway Administration (FHWA). RESULTS : The cantabros loss rate was 19.62 % for conventional modified asphalt (PG 82-22) and 5.95 % for the developed highviscosity modified asphalt (PG 88-28), indicating that both mixtures passed the criteria. Regarding the drain-down loss rate, mixtures using both types of asphalt were found to pass all quality standards. The average permeability coefficients for each porous asphalt mixture were 0.023 and 0.018 and both types of porous asphalt mixtures satisfied the quality standard of 0.01 cm/s, as given by the Asphalt Concrete Pavement Guidelines of the Ministry of Land, Infrastructure, and Transport. CONCLUSIONS : As a result of the mix design of the two porous asphalt mixtures, the mixture developed in this study was found to be superior to the conventional porous asphalt mixture using conventional porous asphalt grading and modified asphalt.

      • KCI등재

        상온 재활용 아스팔트 혼합물의 적정 유화아스팔트 함량 선정 연구

        양성린,손정탄,이강훈 한국도로학회 2018 한국도로학회논문집 Vol.20 No.1

        PURPOSES: The purpose of this study is to evaluate the mechanical properties of a cold-recycling asphalt mixture used as a base layer and to determine the optimum emulsified-asphalt content for ensuring the mixture’s performance. METHODS: The physical properties (storage stability, mixability, and workability) of three types of asphalt emulsion (CMS-1h, CSS-1h, and CSS-1hp) were evaluated using the rotational viscosity test. Asphalt emulsion residues, prepared according to the ASTM D 7497-09 standard, were evaluated for their rheological properties, including the G*/sinδand the dynamic shear modulus (|G*|). In addition, the Marshall stability, indirect tensile strength, and tensile-strength ratio (TSR) were evaluated for the cold-recycling asphalt mixtures fabricated according to the type and contents of the emulsified asphalt. RESULTS: The CSS-1hp was found to be superior to the other two types in terms of storage stability, mixability, and workability, and its G*/sinδ value at high temperatures was higher than that of the other two types. From the dynamic shear modulus test, the CSS-1hp was also found to be superior to the other two types, with respect to low-temperature cracking and rutting resistance. The mixture test indicated that the indirect tensile strength and TSR increased with the increasing emulsified-asphalt content. However, the mixtures with one-percent emulsified-asphalt content did not meet the national specification in terms of the aggregate coverage (over 50%) and the indirect tensile strength (more than 0.4 MPa). CONCLUSIONS : The emulsified-asphalt performance varied greatly, depending on the type of base material and modifying additives; therefore, it is considered that this will have a great effect on the performance of the cold-recycling asphalt pavement. As the emulsified-asphalt content increased, the strength change was significant. Therefore, it is desirable to apply the strength properties as a factor for determining the optimum emulsified-asphalt content in the mix design. The 1% emulsified-asphalt content did not satisfy the strength and aggregate coverage criteria suggested by national standards. Therefore, the minimum emulsified-asphalt content should be specified to secure the performance.

      • KCI등재

        아스팔트 혼합물의 배수 소구조물 적용성 연구

        이진호,박지용,안덕순,권오선 한국도로학회 2021 한국도로학회논문집 Vol.23 No.4

        PURPOSES : This study aims to develop drainage minor-structure materials using asphalt mixtures, and to apply construction methods. METHODS : The AP-5, 120-150A, and 150-200A binders were adopted to select the optimal asphalt binder for the domestic application of asphalt concrete in curb construction. The mixture design of asphalt mixtures has applied the standard for evaluating asphalt curb mixtures in Korea. Test construction utilized asphalt curb equipment to evaluate asphalt mixtures, according to the type of asphalt binder. RESULTS : The results of the asphalt mixture design indicated that the optimum asphalt content was determined at 2–3% air void for each type of asphalt binder, and the quality of the asphalt mixture applied with asphalt curb binder was excellent. In addition, the quality difference was significant, depending on the temperature of the asphalt mixture at each phase of the asphalt curb construction. CONCLUSIONS : Asphalt curb construction using asphalt materials has a large impact on the quality, depending on the temperature of the asphalt mixture, therefore management at the appropriate temperature is important when applying it to the site. Further research is also required on the production, transportation, and dedicated equipment of asphalt mixtures.

      • KCI등재

        Temperature Response to Tensile Characteristics of the Hot Asphalt Mixtures

        Wei Si,Ning Li,Biao Ma,Yu-xiang Tian,Xue-yan Zhou 대한토목학회 2016 KSCE JOURNAL OF CIVIL ENGINEERING Vol.20 No.4

        Asphalt concrete is one type of the temperature sensitive mixtures, which is the most and broadest used pavement material in the world. Asphalt pavement suffers from the impact of temperature due to the temperature variation in different districts and environments. Facing temperature sensitivity, this paper uses Indirect Tensile Test (IDT) to analyze the tensile characters of asphalt mixture under different temperatures (-20°C, -10°C, 0°C, 15°C, 20°C, 45°C, and 60°C). The influence factors of temperature, loading rate, asphalt content, asphalt types, and mixtures gradation are evaluated. Piecewise linear model, logarithm linear model and S-logistic nonlinear model are applied to simulate the variation of flexural tensile characters with temperature change. Results show that temperature has significant influence on flexural tensile properties. Loading rates also has obvious influence on flexural tensile characteristics. With temperature changes, asphalt types have evident influence on mixture’s tensile characteristics, SBR modified asphalt has better performance at the lower temperature environment. Mixtures’ gradation has important effect on tensile strength and tensile strain as well, while due the similarity between two gradations, it is hard to precisely recommend which one is better. Asphalt content has evident influence on mixtures properties at the same temperature condition. Research results provide suggestions and applications for construction and performance of asphalt pavement. The results also indicate that IDT would be a practical option to evaluate the properties of asphalt mixture in all temperature ranges.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼