RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Study of 100 tonf Tensile Load for SMART Mooring Line Monitoring System Considering Polymer Fiber Creep Characteristics

        Joseph Chul Chung,Michael Myung-Sub Lee,Sung Ho Kang 한국해양공학회 2021 韓國海洋工學會誌 Vol.35 No.4

        Mooring systems are among the most important elements employed to control the motion of floating offshore structures on the sea. Considering the use of polymer material, a new method is proposed to address the creep characteristics rather than the method of using a tension load cell for measuring the tension of the mooring line. This study uses a synthetic mooring rope made from a polymer material, which usually consists of three parts: center, eye, and splice, and which makes a joint for two successive ropes. We integrate the optical sensor into the synthetic mooring ropes to measure the rope tension. The different structure of the mooring line in the longitudinal direction can be used to measure the loads with the entire mooring configuration in series, which can be defined as SMART (Smart Mooring and Riser Truncation) mooring. To determine the characteristics of the basic SMART mooring, a SMART mooring with a diameter of 3 mm made of three different polymer materials is observed to change the wavelength that responds as the length changes. By performing the longitudinal tension experiment using three different SMART moorings, it was confirmed that there were linear wavelength changes in the response characteristics of the 3-mm-diameter SMART moorings. A 54-mm-diameter SMART mooring is produced to measure the response of longitudinal tension on the center, eye, and splice of the mooring, and a longitudinal tension of 100 t in step-by-step applied for the Maintained Test and Fatigue Cycle Test is conducted. By performing a longitudinal tension experiment, wavelength changes were detected in the center, eye, and splice position of the SMART moorings. The results obtained from each part of the installed sensors indicated a different strain measurement depending on the position of the SMART moorings. The variation of the strain measurement with the position was more than twice the result of the difference measurement, while the applied external load increased step-by-step. It appears that there is a correlation with an externally generated longitudinal tensional force depending on the cross-sectional area of each part of the SMART mooring.

      • KCI등재

        계류식 돌핀구조물에 대한 지반-말뚝계의 비선형 지반반력 해석

        오세붕,이진학,이상순,김동수,정태영 한국지반공학회 1999 한국지반공학회논문집 Vol.15 No.2

        현재 국내에서는 부유식 구조물을 이용하여 소각로 및 담수화 공장을 해상에 축조하는 BMP(Barge Mounted Plant) 시스템에 관한 연구를 수행중에 있다(한국기계연구원 1997). 본 논문에서는 이러한 BMP의 계류 돌핀(mooring dolphin) 구조물하부의 말뚝기초의 거동을 모델하는 기법에 관하여 다루었다. 지반-말뚝계의 축하중 및 횡하중에 대한 거동은 지반을 비선형 스프링으로 모델하고 말뚝을 일축부재 및 보로 모델하여 유한차분적으로 해를 구하는 비선형 지반반력해석을 수행한다. 이러한 말뚝두부에서의 하중-변위관계로부터 지반-말뚝계의 등가강성을 산정할 수 있다. 따라서 본 연구에서는 거제도 주변 해역을 대상으로 지반조사를 수행하였고 이를 토대로 지반의 깊이에 따른 축방향 및 횡방향 하중전이 관계를 도출하였다. 그리고 돌핀하부의 말뚝에 대하여 축하중 및 횡하중에 대한 지반반력해석을 수행하였다. 이러한 해석과정을 통하여 대상지역에 적합한 말뚝의 관입깊이 및 단면을 합리적으로 산정할 수 있었다. 결국 말뚝두부에서의 하중-변위관계로부터 지반-말뚝계의 강성을 모델함으로써, 지반조건을 고려하여 돌핀구조물의 동적해석을 합리적으로 수행할 수 있었다. 해석결과 지반-말뚝계의 강성을 고려할 경우에는 강체로 고려한 경우에 비하여 변위 진폭이 상당히 크게 나타났다. 그리고 돌핀의 케이싱 상부의 모멘트가 더 크게 나타나고 해저지표 말뚝두부에 전달되는 모멘트는 더 작게 나타남을 알 수 있었다. The objective of BMP( Barge Mounted Plant) project is to construct plants on mooring floating structures at sea. To analyze the pile behavior under mooring dolphins, generally, axial or lateral behavior of soil-pile system is evaluated by using a nonlinear subgrade reaction method which models the pile as a structural element and the soil as series of nonlinear springs along the depth. As a result, load-displacement curves at pile head can be solved by finite difference method and the equivalent stiffness of bottom boundaries of dolphin structure is evaluated. In this study off-shore site investigation was performed on the marine area of Koje Island and axial and lateral load transfer curves of the ground were modeled with depth. The subgrade reaction analysis was performed for piles under axial or lateral loadings, and the required penetration depth and section of the pile were determined. Subsequently, the spring boundaries under the dolphin structure could be modeled from the calculated load-displacement curve and then the dynamic response of the dolphin structure was analyzed reasonably by considering ground conditions. The analysis considering the stiffness of the soil-pile system has resulted in larger displacement amplitudes than those for rigid foundations. Furthermore, moment distributions of the casing were dependent on the soil-pile system so that deformable foundation induces the larger moment of top section of casing and the smaller moment of pile head.

      • KCI등재

        계류시스템을 가진 부유식 파력발전기의 동적거동 해석

        최규석(Gyu Seok Choi),손정현(Jeong Hyun Sohn) 대한기계학회 2013 大韓機械學會論文集A Vol.37 No.2

        본 논문에서는 파력에너지를 전기에너지로 변환시키는 파력발전기를 다물체 동역학을 이용하여 모델링 하였으며, 계류시스템이 부유식 파력발전기에 미치는 영향에 대해서 분석하였다. 계류시스템이 파력발전기에 미치는 영향을 줄이기 위한 연구가 많이 이루어지고 있다. 구속방정식과 힘 요소를 이용하여 다물체 시스템을 모델링 하였으며, 3 차원 파랑하중을 적용하여 부유체에 작용하는 파력을 모델링 하였다. 파력발전기의 거동과 발전량을 분석하기 의해 상용 다물체 동역학 해석프로그램인 MSC/ADAMS 를 이용하였다. 계류시스템이 있을 때와 없을 때의 결과를 비교하였고, 특히 극한 파랑하중이 작용했을 때의 시뮬레이션을 통해 파력발전기의 안정성을 평가하였다. In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three-dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load.

      • 계류시스템을 가진 부유식 파력발전기의 동적거동 해석

        최규석(Gyu Seok Choi),손정현(Jeong Hyun Sohn) 대한기계학회 2012 대한기계학회 춘추학술대회 Vol.2012 No.4

        본 논문에서는 파력에너지를 전기에너지로 변환시키는 파력발전기를 다물체 동역학을 이용하여 모델링 하였으며, 계류시스템이 부유식 파력발전기에 미치는 영향에 대해서 분석하였다. 계류시스템이 파력발전기에 미치는 영향을 줄이기 위한 연구가 많이 이루어지고 있다. 구속방정식과 힘 요소를 이용하여 다물체 시스템을 모델링 하였으며, 3 차원 파랑하중을 적용하여 부유체에 작용하는 파력을 모델링하였다. 파력발전기의 거동과 발전량을 분석하기 위해 상용 다물체 동역학 해석프로그램인 MSC/ADAMS를 이용하였다. 계류시스템이 있을 때와 없을 때의 결과를 비교하였고, 특히 극한 파랑하중이 작용했을 때의 시뮬레이션을 통해 파력발전기의 안정성을 평가하였다. In this paper, the dynamic behaviors of WEGS(wave energy generation system) converting the wave energy into the electric energy is analyzed by using multi-body dynamics techniques. Many studies have been to reduce the effects of mooring system on the motion of WEGS. Several kinematic constraints and force elements are employed in the modeling stage. The three-dimensional wave load equations are used to implement the wave loads. Dynamic behaviors of WEGS are analyzed under several wave conditions by using MSC/ADAMS and rotating speed of generating shaft are investigated for predicting the electricity capacity. The dynamic behaviors of WEGS with mooring system are compared with those of WEGS without mooring system. The stability evaluation of WEGS is carried out through simulation under the extreme wave load.

      • KCI등재

        부유식 다수 풍력 발전기에 작용하는 비대칭 공력 하중의 영향

        배윤혁(Yoo Hyeok Bae),Moo-Hyun Kim 한국해양공학회 2015 韓國海洋工學會誌 Vol.29 No.3

        The Present study developed a numerical simulation tool for the coupled dynamic analysis of multiple turbines on a single floater (or Multiple Unit Floating Offshore Wind Turbine (MUFOWT)) in the time domain, considering the multiple-turbine aero-blade-tower dynamics and control, mooring dynamics, and platform motions. The numerical tool developed in this study was designed based on and extended from the single-turbine analysis tool FAST to make it suitable for multiple turbines. For the hydrodynamic loadings of floating platform and mooring-line dynamics, the CHARMBD program developed by the authors was incorporated. Thus, the coupled dynamic behavior of a floating base with multiple turbines and mooring lines can be simulated in the time domain. To investigate the effect of asymmetric aerodynamic loading on the global performance and mooring line tensions of the MUFOWT, one turbine failure case with a fully feathered blade pitch angle was simulated and checked. The aerodynamic interference between adjacent turbines, including the wake effect, was not considered in this study to more clearly demonstrate the influence of the asymmetric aerodynamic loading on the MUFOWT. The analysis shows that the unbalanced aerodynamic loading from on turbine in MUFOWT may induce appreciable changes in the performance of the floating platform and mooring system.

      • KCI등재

        병렬 배치된 FLBT 및 LNG-BS에 작용하는 풍하중 및 조류하중에 대한 풍동 시험 및 경험식 비교 연구

        박병원(Byeongwon Park),정재환(Jae-Hwan Jung),황성철(Sung-Chul Hwang),조석규(Seok-Kyu Cho),정동호(Dongho Jung),성홍근(Hong Gun Sung) 한국해양공학회 2017 韓國海洋工學會誌 Vol.31 No.4

        In recent years, LNG bunkering terminals are needed to supply LNG as fuel to meet the emission requirements of the International Maritime Organization (IMO). A floating LNG bunkering terminal (FLBT) is one of the most cost-effective and environmentally friendly LNG bunkering systems for storing LNG and transferring it directly to an LNG fuel vessel. The FLBT maintains its position using mooring systems such as spread mooring and turret mooring. The loads on the vessel and mooring lines must be carefully determined to maintain their positions within the operable area. In this study, the wind loads acting in several side-by-side arrangements on the FLBT and LNG-BS were estimated using wind tunnel tests in the Force Technology, and the shielding effect due to the presence of ships upstream was evaluated. In addition, the empirical formulations proposed by Fujiwara et al. (2012) were used to estimate the wind force coefficients acting on the FLBT and those results were compared with experimental results.

      • Photothermoelastic interactions under Moore-Gibson-Thompson thermoelasticity

        Kumar, Rajneesh,Sharma, Nidhi,Chopra, Supriya Techno-Press 2022 Coupled systems mechanics Vol.11 No.5

        In the present work, a new photothermoelastic model based on Moore-Gibson-Thompson theory has been constructed. The governing equationsfor orthotropic photothermoelastic plate are simplified for two-dimension model. Laplace and Fourier transforms are employed after converting the system of equations into dimensionless form. The problem is examined due to various specified sources. Moving normal force, ramp type thermal source and carrier density periodic loading are taken to explore the application of the assumed model. Various field quantities like displacements, stresses, temperature distribution and carrier density distribution are obtained in the transformed domain. The problem is validated by numerical computation for a given material and numerical obtained results are depicted in form of graphs to show the impact of varioustheories of thermoelasticity along with impact of moving velocity, ramp type and periodic loading parameters. Some special cases are also explored. The results obtained in this paper can be used to design various semiconductor elements during the coupled thermal, plasma and elastic wave and otherfieldsin thematerialscience, physical engineering.

      • KCI등재

        Aerodynamic response of articulated towers: state-of-the-art

        M. Moonis Zaheer,Nazrul Islam 한국풍공학회 2008 Wind and Structures, An International Journal (WAS Vol.11 No.2

        Wind and wave loadings have a predominant role in the design of offshore structures in general, and articulated tower in particular for a successful service and survival during normal and extreme environmental conditions. Such towers are very sensitive to the dynamic effects of wind and wind generated waves. The exposed superstructure is subjected to aerodynamic loads while the submerged substructure is subjected to hydrodynamic loads. Articulated towers are designed such that their fundamental frequency is well below the wave frequency to avoid dynamic amplification. Dynamic interaction of these towers with environmental loads (wind, waves and currents) acts to impart a lesser overall shear and overturning moment due to compliance to such forces. This compliancy introduces geometric nonlinearity due to large displacements, which becomes an important consideration in the analysis of articulated towers. Prediction of the nonlinear behaviour of these towers in the harsh ocean environment is difficult. However, simplified realistic mathematical models are employed to gain an important insight into the problem and to explore the dynamic behaviour. In this paper, various modeling approaches and solution methods for articulated towers adopted by past researchers are reviewed. Besides, reliability of articulation system, the paper also discussed the design, installation and performance of articulated towers around the world oceans.

      • SCIESCOPUS

        Aerodynamic response of articulated towers: state-of-the-art

        Zaheer, M. Moonis,Islam, Nazrul Techno-Press 2008 Wind and Structures, An International Journal (WAS Vol.11 No.2

        Wind and wave loadings have a predominant role in the design of offshore structures in general, and articulated tower in particular for a successful service and survival during normal and extreme environmental conditions. Such towers are very sensitive to the dynamic effects of wind and wind generated waves. The exposed superstructure is subjected to aerodynamic loads while the submerged substructure is subjected to hydrodynamic loads. Articulated towers are designed such that their fundamental frequency is well below the wave frequency to avoid dynamic amplification. Dynamic interaction of these towers with environmental loads (wind, waves and currents) acts to impart a lesser overall shear and overturning moment due to compliance to such forces. This compliancy introduces geometric nonlinearity due to large displacements, which becomes an important consideration in the analysis of articulated towers. Prediction of the nonlinear behaviour of these towers in the harsh ocean environment is difficult. However, simplified realistic mathematical models are employed to gain an important insight into the problem and to explore the dynamic behaviour. In this paper, various modeling approaches and solution methods for articulated towers adopted by past researchers are reviewed. Besides, reliability of articulation system, the paper also discussed the design, installation and performance of articulated towers around the world oceans.

      • KCI등재

        MEG4(Mooring Equipment Guideline 4) 적용에 따른 대용량 무어링 피팅 개발

        이명수,서광철,박주신 해양환경안전학회 2023 해양환경안전학회지 Vol.29 No.7

        선박이 부두에 안전하게 계류 및 예인하기 위해서는 관련 국제규정에 부합하는 설계를 해야 한다. 그러나 현재까지도 일부 소형 조선소 및 설계 회사에서는 그 내용을 정확히 숙지하지 못하고 있는 경우가 많다. 따라서 본 논문에서는 예인 및 계류설비에 관한 국제규정을 살펴보고, 최신 발효된 MEG4(Mooring equipment guideline 4) 기준에 만족하는 대표적인 계류 의장품인 볼라드(Bollard)와 쵸크(Chock)를 개발하고자 한다. 볼라드는 계류 밧줄을 선체에 고박하기 위한 의장품이며, 일반적으로 2개의 기둥으로, 대부분은 8자 매듭 형태로 사용하고 있다. 쵸크는 선외에서 선내로 들어오는 계류 밧줄의 방향을 전환하고, 밧줄의 손상을 방지하기 위하여 곡률을 갖는 주물 방식으로 제작한다. 이 두 가지 계류 의장품은 선박의 선수와 선미, 중앙부 측면에서 많이 사용되고 있다. 최근 컨테이너선 및 LNG 운반선의 크기 증가로 인하여, 계류 밧줄 하중이 증가하고 있으며, 계류 의장품도 안전사용하중(Safe working load)이 변경되어야 한다. 본 연구에서는 유한요소해석 모델링을 통한 허용응력 평가법 결과를 정리하고, 분석하였다. 추가적으로 비선형 붕괴 거동 평가를 통하여, 안전사용하중 결정에 대한 검증을 수행하였고, 탄성영역 내 설계가 되었음을 확인하였다. 연구에서 제안하는 평가법 및 기준, 그리고 해석절차는 향후 유사 의장품 개발 시 참조가 가능하다. For safe mooring and towing between the ship and port, the equipment must be designed in accordance with the relevant international regulations. However, some small shipyards and engineering companies often do not fully comprehend the core contents. Therefore, the international regulations regarding towing and mooring equipment are reviewed and the bollard and chock are newly developed based on the Mooring Equipment Guideline 4 (MEG4) standards. A bollard is a mooring equipment used to fix a mooring rope to the hull. It has two columns and is mostly used in a figure eight pattern knots under the mooring condition. The chock, which is used to change the mooring rope direction coming into the ship from outside, is manufactured using a casting with curvature. The two mooring equipment are widely used in the stern, bow, and mid-side. Owing to the increase in the size of container vessels and LNG ships, the mooring rope load has increased and the safe working load of the mooring equipment must be revised. This study summarizes and examines the results of the allowable stress method obtained using finite element analysis modelling. To consider the mesh size effect, a reasonable criteria was suggested by referring the existing class guidance. Additionally, the safe working load was verified through nonlinear collapse analysis, and the elastic region against load increments was confirmed. Furthermore, the proposed evaluation method can be used to develop similar equipment in the near future.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼