RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        통합 하이브리드시스템의 압력강하 거동 및 바이오필터 담체의 미생물 population 분포

        이은주 ( Eun Ju Lee ),임광희 ( Kwang-hee Lim ) 한국화학공학회 2022 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.60 No.1

        교대로 운전되는 광촉매반응기 공정, 및 바이오필터 공정(전통적 바이오필터(L 반응기)와 두 개의 유닛(unit)을 가지는 개선된 바이오필터시스템(R 반응기))로 구성된 통합처리시스템에서, 에탄올과 황화수소를 동시 함유한 폐가스 처리를 수행하는데 발생하는 공정 당 압력강하(△p)와 바이오필터 공정의 미생물 population 분포를 관찰하였다. 교대로 운전되는 광촉매 반응기의 △p는, 바이오필터의 △p와 비교할 때에 무시할 정도로 작게 관찰되었다. L 반응기의 △p는, 통합처리시스템의 운전 중에 계속 증가하여 4.0~5.0 mmH<sub>2</sub>O (i.e., 5.0~6.25 mmH<sub>2</sub>O/m)로 증가하였다. 한편 R 반응기의 경우에서는 L 반응기의 △p의 약 16~20% 이하인 작은 △p를 나타내었다. 본 연구에서 적용한 공극율이 큰 폐타이어 담체 등의 바이오필터 담체 및 R 반응기 설계의 적용이, 목재 칩(wood chip)과 목재 바크(wood bark)의 50 대 50인 혼합물을 바이오필터 담체로 사용한 전통적 바이오필터의 보고된 압력강하 값의 각각 37~50%와 40~53% 만큼 압력강하 저감에 공헌하였다고 분석되었다. 또한 본 연구의 R 반응기 운전에서 압력강하 값이, 공극율이 큰 화산석(scoria)과 compost를 75 대 25로 혼합한 복합 담체를 충전한 전통적 바이오필터의 보고된 압력강하 값보다 약 80%만큼 저감된 결과는 주로 R 반응기 설계의 적용에 기인하였다고 해석되었다. 한편, 통합처리시스템에서 바이오필터 담체의 microbial population 분포로서 L 반응기 및 R 반응기의 담체 내 미생물 콜로니 수 비교에서는 L 반응기가 제일 밑단에서 다른 윗 단의 콜로니 수보다 거의 두 배로 증가하였으나; R 반응기의 경우는 R<sub>dn</sub> 반응기와 R<sub>up</sub> 반응기 각각의 상단과 하단에서 고르게 분포하였고 L 반응기보다 콜로니 수가 평균적으로 약 50% 정도 더 컸다. 이러한 현상은 R 반응기의 상단과 하단의 함수율이 50-55%의 고른 분포를 보인 것에 기인하였다. 따라서 개선된 바이오필터시스템이 전통적 바이오필터보다 △p와 미생물 population 분포에서 더욱 우수한 특성을 보였다. In this study, waste air containing ethanol and hydrogen sulfide, was treated by an integrated hybrid system composed of two alternatively-operating UV/photocatalytic reactor-process and biofilter processes of a biofilter system having two units with an improved design (R reactor) and a conventional biofilter (L reactor). Both a pressure drop (△p) per unit process of the integrated hybrid system and a microbe-population-distribution of each biofilter process were observed. The △p of the UV/photocatalytic reactor process turned out very negligible. The △p of the L reactor was observed to increase continuously to 4.0~5.0 mmH<sub>2</sub>O (i.e., 5.0~6.25 mmH<sub>2</sub>O/m). In case of R reactor, its △p showed the one below ca. 16~20% of the △p of the L reactor. Adopting such microbes-carrying biofilter media with high porosity as waste-tire crumb media, and the improved biofilter design, contributed to △p of this study, reduced by ca. 37~50% and 40~53%, respectively, from the reported △p of conventional biofilter packed with biofilter media of the mixture (50:50) of wood chip and wood bark. In addition, the △p of R reactor in this study, reduced by ca. 80% from the reported △p of conventional biofilter packed with biofilter media of the mixture (75:25) of scoria with high porosity and compost, was mainly attributed to adopting the improved biofilter design. On the other hand, in case of L reactor, the CFU counts in its lowest column was analyzed double as much as those in any other columns. However, in case of R reactor, its CFU counts were bigger by 50% than the one of L reactor and its microbes were evenly distributed at its higher and lower columns of R<sub>dn</sub> reactor and R<sub>up</sub> reactor. This phenomena was attributed to an even moisture distribution of 50~55% of R reactor at its higher and lower columns. Therefore, R reactor showed superb characteristics in terms of both △p and microbe-population-distribution, compared to L reactor.

      • SCIESCOPUSKCI등재

        Numerical Study on the Natural Circulation Characteristics in an Integral Type Marine Reactor for Inclined Conditions

        Kim, Tae-Wan,Park, Goon-Cherl,Kim, Jae-Hak Korean Nuclear Society 2001 Nuclear Engineering and Technology Vol.33 No.4

        A marine reactor shows very different thermal-hydraulic characteristics compared to a land- based reactor. Especially, study on the variation of flow field due to ship motions such as inclination, heaving and rolling is essential since the flow variation has great influence on the reactor cooling capability. In this study, the natural circulation characteristics of integral type marine reactor with modular steam generators were analyzed using computational fluid dynamics code, CFX-4, for inclined conditions. The numerical analyses are performed using the results of natural circulation experiments for integral reactor which are already conducted at Seoul National University. From the results, it was found that the flow rate in the ascending steam generator cassettes increases due to buoyancy effect. Due to this flow variation, temperature difference occurs at the outlets of the each steam generator cassettes. which is mitigated through downcomer by thermal mixing. Also, around the upper pressure header the flow from descending hot leg goes up to the ascending steam generator cassettes due to large natural circulation driving force in ascending steam generator cassettes. From this result, the increase of How rate in the ascending steam generator cassettes could be understood qualitatively.

      • KCI등재

        INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

        BELLE R. UPADHYAYA,MATTHEW R. LISH,J. WESLEY HINES,RYAN A. TARVER 한국원자력학회 2015 Nuclear Engineering and Technology Vol.47 No.2

        Several vendors have recently been actively pursuing the development of integral pressurizedwater reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removalafter reactor shutdown, and modular construction that allow fast plant integration and asecure fuel cycle. The features of an integral reactor limit the options for placing controland safety system instruments. The development of instrumentation and control (I&C)strategies for a large 1,000 MWe iPWR is described. Reactor system modelingdwhich includesreactor core dynamics, primary heat exchanger, and the steam flashing drumdis animportant part of I&C development and validation, and thereby consolidates the overallimplementation for a large iPWR. The results of simulation models, control development,and instrumentation features illustrate the systematic approach that is applicable to integrallight water reactors

      • KCI등재

        Dependence of External Magnetic Field in the Matrix-Type SFCL with the Separated or the Integrated Reactors

        조용선(Yong-Sun Cho),최효상(Hyo-Sang Choi),정병익(Byoung-Ik Jung),고성필(Sung-Pil Go) 대한전기학회 2011 전기학회논문지 Vol.60 No.4

        The matrix-type superconducting fault current limiter (MSFCL) consists of the trigger and current-limiting parts. The trigger part with reactors connected in parallel improves the quenching characteristics by applying the external magnetic field into the superconducting units. The current-limiting part with superconducting units connected in parallel and shunt reactors connected in series limit the fault current when the fault occurs. We developed the integrated reactor with the trigger and the current-limiting parts to apply high external magnetic field into the superconducting units. This was composed of a superconducting unit for the trigger part and two superconducting units for the current-limiting parts. We confirmed that the external magnetic field generated in the MSFCL with an integrated reactor was larger than that of the MSFCL with the separated reactors. So the differences of voltages generated between superconducting units were decreased in the difference according to the increment of the applied voltage. The whole magnitude of the SFCL was reduced because the volume of an integrated reactor could be reduced by one-third than that of the separated reactors. We confirmed that the critical behavior between the superconducting units in the MSFCL with an integrated reactor was more improved than that of the MSFCL with the separated reactors.

      • 내지진용 리드스위치를 이용한 일체형원자로용 위치지시기 개발

        유제용(Je-Yong Yu),김지호(Ji-Ho Kim),허형(Hyung Huh),최명환(Myoung-Hwan Choi),손동성(Dong-Seong Sohn) 대한기계학회 2008 대한기계학회 춘추학술대회 Vol.2008 No.11

        The reed switch position transmitter (RSPT) is used as a position indicator for the control rod in commercial nuclear power plants made by ABB-CE. But this position indicator has some problems when directly adopting it to the integral reactor. The Control Element Drive Mechanism (CEDM) for the integral reactor is designed to raise and lower the control rod in steps of 2㎜ in order to satisfy the design features of the integral reactor which are the soluble boron free operation and the use of a nuclear heating for the reactor start-up. Therefore the resolution of the position indicator for the integral reactor should be achieved to sense the position of the control rod more precisely than that of the RSPT of the ABB-CE. This paper adopts seismic resistance reed switches to the position indicator in order to reduce the damages or impacts during the handling of the position indicator and earthquake.

      • KCI등재

        염색산업단지 종합폐수처리용 재순환 통합시스템

        이은주 ( Eun Ju Lee ),임광희 ( Kwang-hee Lim ) 한국화학공학회 2017 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.55 No.6

        D염색공단의 폴리에스테르 알카리 감량폐수 및 호발폐수가 혼합된 실제 종합염색폐수를 처리하기 위하여 D염색공단의 종합폐수처리장 반송슬러지를 고정한 폐타이어담체를 충전한 재순환 유동상 바이오필터와 소성된 TiO<sub>2</sub> 코팅-glass bead를 광촉매담체로 적용한 UV/광촉매반응기를 결합한 재순환 통합시스템을 구축하여 운전하였다. 그 결과로서 재순환 통합시스템의 총 COD<sub>cr</sub> 제거율과 총 색도 제거율 추이는 각각 약 81% 및 55% 정도를 유지하였다. 이러한 재순환 통합시스템의 총 COD<sub>cr</sub> 및 총 색도 제거율의 제고효과는 각각 최대 약 7% 및 3%로 평가되었다. 재순환 통합시스템의 유동상 바이오필터 및 광촉매반응공정은 총 제거율에 대한 상대기여도로서 각각 총 COD<sub>cr</sub> 제거율의 약 94% 및 6%를 처리하고, 총 색도 제거율의 약 86% 및 14%를 처리하였다. 이와 같이 재순환 통합시스템의 광촉매반응공정에서는 총 제거율에 대한 색도 제거율의 상대기여도가 COD<sub>cr</sub> 제거율의 상대기여도보다 약 2.4배 정도 컸다. 따라서 본 연구의 재순환 통합시스템에서 광촉매반응공정은 COD<sub>cr</sub> 제거보다 아조결합과 같이 염료에서 색을 나타내는 화학결합을 깨는 역할에 더욱 효율성이 있었다. 또한 본 연구의 재순환 통합시스템에서 각 단위공정들의 COD<sub>cr</sub> 및 색도 제거율이, 재순환 통합시스템의 총 COD<sub>cr</sub> 및 색도 제거율에 미치는 영향에 대한 모델식과 대수적 상관관계를 구하고 분석하였다. A recirculating integrated system composed of a fluidized biofilter filled with waste-tire crumb media fixed with return sludge from wastewater treatment facility of D dyeing industrial center, and a UV/photocatalytic reac-tor packed with calcined TiO<sub>2</sub> coated-glass beads as photocatalyst-support, was constructed and was run to treat authen-tic textile-dyeing wastewater from D-dyeing industrial center, which was mixed with an alkaline polyester-weight-reducing wastewater and a wastewater from sizing process. As a result, its total removal efficiency(RE(tot)) of COD<sub>cr</sub> and colors were ca. 81% and 55%, respectively. The synergy effect of the recirculating integrated system to enhance total removal effi-ciency( RE(tot)) of COD<sub>cr</sub> and colors were evaluated at most ca. 7% and 3%, respectively. The fluidized biofilter and the UV/photocatalytic reactor were responsible for ca. 94% and 6% of the total COD<sub>cr</sub> removal efficiency, respectively, and were also responsible for ca. 86% and 14% of the total color-removal efficiency, respectively. Thus, the degree of the UV/photocatalytic reactor-unit process’s contribution to RE(tot) of color, was about 2.4 times of that to RE(tot) of COD<sub>cr</sub>. Therefore, the UV/photocatalytic reactor facilitated the more effective elimination of colors by breaking down the chemical bonds oriented from colors of dyes such as azo-bond, than COD<sub>cr</sub>. In addition, the effect of the removal efficiency of each unit process(i.e., the fluidized biofilter or the UV/photocatalytic reactor) of the recirculating integrated sys-tem on RE(tot) of COD<sub>cr</sub> and colors, was analysed by establishing its model equation with an analytic correlation.

      • A Safety Analysis of a Steam Generator Module Pipe Break for the SMART-P

        Kim Hee Kyung,Chung Young-Jong,Yang Soo-Hyung,Kim Hee-Cheol,Zee Sung-Quun The Korean Society of Safety 2004 International Journal of Safety Vol.3 No.1

        SMART-P is a promising advanced small and medium category nuclear power reactor. It is an integral type reactor with a sensible mixture of new innovative design features and proven technologies aimed at achieving a highly enhanced safety and improved economics. The enhancement of the safety and reliability is realized by incorporating inherent safety improving features and reliable passive safety systems. The improvement in the economics is achieved through a system simplification, and component modularization. Preliminary safety analyses on selected limiting accidents confirm that the inherent safety improving design characteristics and the safety system of SMART-P ensure the reactor's safety. SMART-P is an advanced integral pressurized water reactor. The purpose of this study is for the safety analysis of the steam generator module pipe break for the SMART-P. The integrity of the fuel rod is the major criteria of this analysis. As a result of this analysis, the safety of the RCS and the secondary system is guaranteed against the module pipe break of a steam generator of the SMART-P.

      • KCI등재

        Neutronics Analysis of a 200 kWe Space Nuclear Reactor with an Integrated Honeycomb Core Design

        Chen Chao,Mei Huaping,He Meisheng,Li Taosheng 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.12

        Heat pipe cooled nuclear reactor has been a very attractive technical solution to provide the power for deep space applications. In this paper, a 200 kWe space nuclear reactor power design has been proposed based on the combination of an integrated UN ceramic fuel, a heat pipe cooling system and the Stirling power generators. Neutronics and thermal analysis have been performed on the space nuclear reactor. It was found that the entire reactor core has at least 3.9 $ subcritical even under the worst-case submersion accident superimposed a single safety drum failure, and results from fuel temperature coefficient, neutron spectrum and power distribution analysis also showed that this reactor design satisfies the neutronics requirements. Thermal analysis showed that the power in the core can be successfully removed both in normal operation or under one or more heat pipes failure scenarios.

      • KCI등재

        축류형 펌프에서 펌프전력을 이용한 유량산정 방범에 관한 연구

        이준,서재광,박천태,김영인,윤주현,Lee, Jun,Seo, Jae-Kwang,Park, Chun-Tae,Kim, Young-In,Yoon, Ju-Hyun 한국산학기술학회 2004 한국산학기술학회논문지 Vol.5 No.3

        It is the common features of the integral reactors that the main components of the RCS are installed within the reactor vessel, and so there are no any flow pipes connecting the steam generator or the pump whose type is the axial flow. Due to no any flow pipes, it is impossible to measure the differential pressure at the RCS of the integral reactors, and it also makes impossible measure the flow-rate of the reactor coolant. As a alternative method, the method by the measurement of the pump power of the axial flow pump has been introduced in this study. Up to now, we did not found out a precedent which the pump power is used for the flow-rate calculation at normal operation of the commercial nuclear power plants. The objective of the study is to embody the flow-rate calculation method by the measurement of the pump power in an integral reactor. As a result of the study, we could theoretically reason that the capacity-head curve and capacity-shaft power curve around the rated capacity with the high specific-speeded axial flow pumps have each diagonally steep incline but show the similar shape. Also, we could confirm the above theoretical reasoning from the measured result of the pump motor inputs. So, it has been concluded that it is possible to calculate the flow-rate by the measurement of the pump motor inputs.

      • A steam or gas pressurizer effect on the system pressure characteristics for an integral pressurized water reactor

        Chung, Young-Jong,Yang, Soo-Hyong,Bae, Kyoo-Hwan Elsevier 2018 Annals of nuclear energy Vol.115 No.-

        <P><B>Abstract</B></P> <P>A pressurizer is a major component used to control a system pressure in a primary coolant system of a pressurized water reactor. To identify the system pressure characteristics on nitrogen gas-water and steam-water pressurizers for an integral pressurizer water reactor, an experimental study is carried out on the integral test facility, VISTA-ITL, which is a scaled down facility of the SMART plant. According to the experimental results, the pressurization rate and peak pressure are affected by the pressurizer type. The pressurization and depressurization rate with the steam pressurizer is smaller than the gas pressurizer since water has its inherent characteristic having latent heat while a nitrogen has ideal gas properties. The safety valve in both the gas and steam pressurizers is not opened during the transient. It is one of the characteristics of the integral reactor SMART design with a large pressurizer volume. The cooldown rate of the primary coolant system during the later part transient depends on the decay heat level regardless of the pressurizer type.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Pressurizer is a major component to control a system pressure of the PWR. </LI> <LI> System pressure characteristics on nitrogen gas-water and steam-water pressurizers. </LI> <LI> Pressurization at the steam pressurizer is lower than that of the gas pressurizer. </LI> <LI> Depressurization for the long-term cooling depends on a decay heat level. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼