RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • 맥솔(脈率)과 심박변이도(心搏變移度)의 상관성(相關性) 연구(硏究)

        양동훈 ( Dong-hoon Yang ),박영배 ( Young-bae Park ) 대한한의진단학회 2006 大韓韓醫診斷學會誌 Vol.10 No.2

        Background: Pulse-respiration ratio has been used for estimating subject`s status in oriental medicine. Pulse and respiration is strongly associated with autonomic nerve system. But there is no research about correlation between pulse-respiration ratio and autonomic nerve system. Objectives: We performed this study to know correlation between pulse-respiration ratio and HRV(heart rate variability) that shows autonomic nerve system status well and to clarify clinical meaning of pulse-respiration ratio. Methods: After subject`s 10 minutes rest, we measured subject`s ECG, respiration pattern and HRV. In this research, subject`s number is 95(Male 50/Female 45). We calculated pulse-respiration ratio from ECG and respiration pattern. Then, we analyzed correlation between pulse-respiration ratio and HRV parameters in all subjects, 2 group divided by Wan-Maek(P-R ratio 4.28). We tried to compare HRV parameters among Wan-Maek, Sak-Maek and Ji-Maek group. Correlation analysis between pulse-respiration Ratio and pulse rate, respiration rate is performed. Finally correlation analysis between Respiration and HRV parameters in all subjects, 2 group divided by Wan-Maek(4.28) is studied. Results: 1. Mean pulse-respiration is 4.10±0.67, Mean pulse rate is 68.06±7.82bpm, Mean respiration rate is 16.81±2.72 times per minute in all subjects. 2. Correlation analysis between pulse-respiration ratio and HRV parameters of high pulse-respiration ratio group is not Significant. But, in low pulse-respiration ratio group, HFnorm(correlation coefficient 0.306, p= 0.018), InHF (0.308, p=0.002) is sig-nificantly correlated with pulse-respiration ratio. 3. Comparison of HRV parameters among Wan-Maek, Sak-Maek and Ji-Maek Group is not significant. 4. Pulse-respiration ratio is more affected by respiration rate(correlation coefficient -0.717, p= 0.000) than pulse rate (correlation coefficient 0.396, p=0.000). 5. Correlation analysis between respiration rate and HRV parameters of high pulse-respiration ratio group is not significant. But, in low pulse-respiration ratio group, HFnorm (correlation coefficient -0.327, p=0.011), LF/HF(0.346, p=0.007), 1nHF (-0.355, p=0.006) are significantly correlated with respiration rate. Conclusions: Pulse-respiration ratio and parasympathetic index has positive correlation. The closer Wan-maek, The higher parasympathetic index in low pulse-respiration ratio group. Respiration rate is more related with pulse-respiration ratio than pulse rate. Respiration is negatively correlated with autonomic parameters. And the slower respiration, the higher parasympathetic index in low pulse-respiration ratio group.

      • KCI등재

        RSA분석과 자율신경기능을 평가하는 호흡주기 설정에 관한 연구

        이상명,이성준,안재목,김점근,Lee, Sang-Myung,Lee, Sung-Jun,Ahn, Jae-Mok,Kim, Jeom-Keun 대한의용생체공학회 2007 의공학회지 Vol.28 No.4

        Heart rate variability(HRV) is the clinical consequence of various influences of the autonomic nervous system(ANS) on heart beat. HRV can estimate the potential physiologic rhythm from the interval between consecutive beats(RR interval or HRV data), but cardiovascular system governed by ANS is in relation to respiration and autonomic regulation. It is known as RSA representing respiration-related HR rhythmic oscillation. Because the mechanism linking the variability of HR to respiration is complex, it has so far been unknown well. In this paper, we tried to evaluate 5-min RR interval segments under control of respiration in order to find out a proper respiration rate that can estimate the ANS function. 10 healthy volunteers were included to evaluate 5-min HRV data under 4 different respiration-controlled environments; 0.03Hz, 0.1Hz, 0.2Hz, and 0.4Hz respiration. HRV data were analyzed both in the frequency and the time domain, with cross-correlation coefficient(cross-coeff.) for HRV and respiration signal. The results showed maximum cross-coeff. of 0.84 at 0.1 Hz and minimum that of 0.16 at 0.4Hz respiration. Cross-coeff was decreased at a faster rate from 0.1Hz respiration. All mean SDNN, RMSSD, and pNN50 of time domain measures were 108.7ms, 71.85ms, and 28.47%, respectively, and LF, HF, and TP of frequency domain measures were $12,722ms^2,\;658.8ms^2$, and $7,836.64ms^2$ at 0.1Hz respiration, respectively. In conclusion, 0.1Hz respiration was observed to be very meaningful from time domain and frequency domain analysis in relation to respiration and autonomic regulation of the heart.

      • KCI등재

        요로결석 환자의 주관적 통증 호소 정도와 생체활력징후와의 관련성

        김홍원,조한진,최한성,홍훈표,김동필,김신철,고영관 대한응급의학회 2007 대한응급의학회지 Vol.18 No.5

        Purpose: Some studies indicate that vital signs such as blood pressure, heart rate, respiration rate, body temperature correlate with each other. However, no study has rigorously confirmed the correlations between vital signs due to study limitations. The aim of this study is to determine the relationship of pain to vital sings and to assess its clinical utility in ureter stone patients. Methods: All 371 patients with ureter stone admitted to the Emergency Department (ED) at Kyung Hee University Hospital from September 1, 2005 to August 31, 2006 were prospectively involved in our study. We recorded vital signs of all patients 3 times every 10 minutes before analgesic injection and determined mean values. We analyzed the data by using the SPSS 13.0 statistics program. Results: The means for systolic and diastolic blood pressure, heart rate and respiration rate were significantly different in pain score (p<0.05), but were not different by body temperature. Correlations of pain grade to vital signs were calculated, and blood pressure, heart rate and respiration rate showed positive correlation with pain grade (p<0.05). In multivariate analysis by general linear analysis, only systolic blood pressure and respiration rate were significantly associated with pain scores (p<0.05). Conclusion: In general, we have a tendency to underestimate the importance of the respiration rate relative to blood pressure, heart rate, and body temperature except in special circumstances, such as COPD or asthma exacerbation. Self-reported pain scores of patients correlate with vital signs, especially blood pressure and respiration rate.

      • KCI등재

        특정 호흡수에서 행한 통제호흡이 심박변이도에 미치는 영향

        김지환,김병수,박성식,이용재,금나래,배효상,Kim, Ji-Hwan,Kim, Byoung-Soo,Park, Seong-Sik,Lee, Yong-Jae,Keum, Na-Rae,Bae, Hyo-Sang 사상체질의학회 2016 사상체질의학회지 Vol.28 No.2

        Objectives We observed what effects of Paced Breathing(PB) in specific respiration rate have on heart rate variability (HRV) according to Sasang Constitution.Methods HRV of 72 healthy participants in sitting position was recorded while they carried out usual breathing, 0.2Hz, 0.1Hz, and 0.05Hz PB each 5 minutes in consecutive order. Five minute of relaxation was permitted between each breathing. Finally, HRV indices were statictically analyzed of 32 participants (SOEUM: 11, SOYANG: 10, TAEEUM: 11) after data out of accord with respiration rate or outliers were excluded.Results and Conclusions According to respiration rates, there was no statistical significance of HRV among Sasang Constitution. Regardless of Sasang Constituion, 0.2Hz PB increased mean heart rate and decreased natural logarithmic low frequency(lnLF) oscillation of HRV without the change of natural logarithmic high frequency(lnHF), while 0.1Hz PB increased lnLF and standard deviation of N-N interval(SDNN), and slightly decreased lnHF without the change of mean heart rate. 0.05 Hz PB also showed the same effect as 0.1Hz PB, but was impracticable.

      • KCI등재

        표면적 변화에 기반한 입체적 웨어러블 호흡수 센서의 가능성 탐색

        이승표,반현성,이주현 한국감성과학회 2018 감성과학 Vol.21 No.1

        This study suggests the sensing method of the Three-dimensional respiration rate sensor based on surface area changes, and exploring the design direction of the three-dimensional breathing sensor and the design orientation of the garment. To achieve this, two types of three-dimensional respiration rate sensor were produced, and the study of the dummy and the subjects studied. The studyⅠ investigated the possibility of measurement of the threedimensional respiration sensor by the study variables of the sensor type and speed of respiration. The studyⅡ proposes a suitable type of sensor for each of the three measuring positions in addition to the study variables in the studyⅠ. To evaluate accuracy, reproducibility, and reliability of the three-dimensional respiration rate sensor, the BIOPAC was used to measure the respiration rate simultaneously with the three-dimensional respiration rate sensor. Through all these results of the experiment, it explored the possibility of measurement of the three-dimensional respiration sensor for the dummy. It also proposed a suitable type of sensor by measuring the respiration rate for the human body. 본 연구에서는 센서의 표면적 변화에 따른 입체적 호흡수 센서의 센싱 방식을 제안하고, 직물 기반의 입체적 호흡수센서의 성능 평가 및 의복에 적용할 수 있는 디자인 방향성을 탐색하고자 한다. 이를 위해 입체적 구조의 차이에따라 2가지 유형의 입체적 호흡수 센서를 제작하고 더미와 인체 대상으로 연구를 실시하였다. 연구Ⅰ은 더미 대상실험으로 센서의 유형 및 호흡 속도의 연구변인에 의해 입체적 호흡수 센서의 측정 가능성을 탐색하였다. 연구Ⅱ는7명의 20대 남성을 대상 실험으로 연구Ⅰ의 연구변인 이외에 3개의 측정 위치별 적합한 유형의 센서를 제안하였다. 입체적 호흡수 센서의 정확도, 재현성, 신뢰도를 평가하기 위해, 의료기기 분야의 대표적 웨어러블 호흡수 센서인 BIOPAC을 사용하여 입체적 호흡수 센서와 동시에 호흡수를 측정하였다. 이상의 연구 결과를 통해 더미 대상으로입체적 호흡수 센서의 측정 가능성을 탐색하였으며, 인체 대상으로 호흡수를 측정하여 측정 위치별 적합한 유형의 센서를 제안하였다.

      • KCI등재

        엽온 및 광강도에 따른 대두품종간의 광합성능력에 관한 연구

        윤병성 한국자원식물학회 1995 한국자원식물학회지 Vol.8 No.2

        대두(大豆) 수량(收量)이 우수한 은하(銀河), 방사(放射), 팔달(八達) 재배품종(栽培品種)을 광합성활성폭사선(光合成活性幅射線) ((PAR) 범위(範圍)에서 5본엽기(本葉期)($V_5$)에 엽온(葉溫)을 달리하여 광합성속도(光合成速度)와 호흡속도(呼吸速度)의 변화를 측정하였고, 품종별(品種別) 엽(葉)의 특성인 비엽중(比葉重)(SLW), 엽녹소함양(葉綠素含量)과 광합성(光合成)과의 관계를 조사한 결과(結果)는 다음과 같다. 1. $25^{\circ}C$에서 순광합성속도(純光合成速度)(Net Photosynthesis)는 은하(銀河) $21.5mgdm^{-2}h^{-1}$, 방사(放射) $20.2mgdm^{-2}h^h{-1}$, 팔달(八達) $18.5mgdm^{-2}h^{-1}$이었다. 2. 전품종(全品種) 모두 엽온(葉溫) $25^{\circ}C$에서 광합성속도(光合成速度)가 가장 높았고 은하(銀河) 품종(品種)이 우수(優秀)했으며, 엽형(葉型)은 은하(銀河) (Long) > 방사(放射)(Oval) > 팔달(八達)(Round) 순서였다. 3. 엽(葉)의 호흡연도(呼吸連度)는 은하(銀河), 방사(放射), 팔달(八達)에서 $15^{\circ}$ $0.56mgdm^{-2}h^{-1}$, $20^{\circ}C$ $0.79mgdm^{-2}h^{-1}$, $25^{\circ}$ $1,15mgdm^{-2}h^{-1}$, $30^{\circ}C$ $1.37mgdm^{-2}h^{-1}$였다. 4. 비엽중(比葉重)은 방사(放射)가 $3.1mg/cm^2$이었고, 은하(銀河)와 팔달(八達)은 $3.5mg/cm^2$이었으며 비엽중(比葉重)과 광합성(光合成)과는 유의성(有意性)이 인정되지 않았다. 5. 엽녹소(葉綠素) 함량(含量)은 은하(銀河)가 $2.48{\mu}g/gF.W.$으로 가장 높았고, 방사(放射)가 $2.19{\mu}g/gF.W.$이었고 팔달(八達)이 $1.67{\mu}g/gF.W.$로 가장 낮았으며 엽록소(葉綠素) 함량(含量)과 광합성(光合成)과는 유의성(有意性)이 인정되었다. 6. 광보상점(光補償點)은 $15^{\circ}C$에서는 $10{\mu}Em^{-2}s^{-1}$로 모두 같았으나, $20^{\circ}C$에서 은하(銀河)는 $12{\mu}Em^{-2}s^{-1}$이었고, 방사(放射)와 팔달(八達)은 $13{\mu}Em^{-2}s^{-1}$이었다. $25^{\circ}C$에서는 은하(銀河)와 방사(放射)가 $16{\mu}Em^{-2}s^{-1}$이었지만 팔달은 $18{\mu}$m^{-2}s^{-1}$이었고, $30^{\circ}C$에서는 은하(銀河)와 방사(放射)가 $22{\mu}Em^{-2}s^{-1}$이었지만, 팔달은 $23{\mu}Em^{-2}s^{-1}$이었다. This study was conducted to investigate the Net photosynthesis and respiration rates among the varieties of Soybean(Eunha, Pangsa and Paldal that have high yields) at various leaf temperature and light intensity at the stage of $V_5$. The relations between the Net photosynthesis rate and SLW(specific leaf weight) and chlorophyll content were also investigated. 1. Net photosynthesis rates at $25^{\circ}C$ were $21.5mgdm^{-2}h^{-1}$ in cv. Eunha, $20.2mgdm^{-2}h^{-1}$ in cv. Pangsa and $18.5mgdm^{-2}h^{-1}$ in cv. Paldal. 2. Most cultivars of Soybean showed the maximum rates of Net photosynthesis at $25^{\circ}C$, especially in cv. Eunha. Also Net photosynthesis rates differed depending on the leaf shape. Long leaf shape(cv. Eunha) was better than round leaf shape(cv. Paldal) in Net photosynthesis rate. 3. Respiration rates of leaves in Eunha, Pangse and Paldal were $0.56mgdm^{-2}h^{-1}$ at $15^{\circ}C$, $0.79mgdm^{-2}h^{-1}$ at $20^{\circ}C$ $1.15mgdm^{-2}h^{-1}$ at $25^{\circ}C$ and $1.37mgdm^{-2}h^{-1}$ at $30^{\circ}C$. 4. Specific leaf weight were $3.1mg/cm^2$ in Pangsa, $3.5mg/cm^2$ in Eunha and Paldal. No signlficant difference were showed in net photosynthesis rates and specific lear weight. 5. Leaf chlorophyll content were $2.48{\mu}g/gF.W.$ in Eunha, $2.19{\mu}g/gF.W.$ in Pangsa and $1.67{\mu}/g F.W.$ in Paldal. Significant difference were showed in Net photosynthesis rates and Leaf chlorophyll content. 6. The estimated compensation points at which net photosynthesis approached zero were $10{\mu}Em^{-2}s^{-1}$ in Eunha, Pangsa, and Palda at 1$5^{\circ}C$. The compensation point in cv. Eunha at $20^{\circ}C$ was $12P{\mu}Em^{-2}s{-1}$ while $13{\mu}Em^{-2}s{-1}$ in Pangsa and Palda. The compensation point in cv. Paldal at $25^{\circ}C$ was $18{\mu}Em^{-2}s{-1}$ while $16{\mu}Em^{-2}s{-1}$ in Eunha and Pangsa. The compensation point in cv. Palda at $30^{\circ}C$ was $23{\mu}Em^{-2}s{-1}$ Palda while $13{\mu}Em^{-2}s{-1}$ in Eunha and Pangsa.

      • KCI등재

        IR-UWB 레이더를 이용한 비접촉 실시간 심박탐지

        변상선 대한임베디드공학회 2019 대한임베디드공학회논문지 Vol.14 No.3

        In recent years, a non-contact respiration and heart rates monitoring via IR-UWB radar has been paid much attention to in various applications - patient monitoring, occupancy detection, survivor exploring in disaster area, etc. In this paper, we address a novel approach of real time heart rate estimation using IR-UWB radar. We apply sine fitting and peak detection method for estimating respiration rate and heart rate, respectively. We also deploy two techniques to mitigate the error caused by wrong estimation of respiration rate: a moving average filter and finding the frequency of the highest occurrence. Experimental results show that the algorithm can estimate heart rate in real time when respiration rate is presumed to be estimated accurately.

      • 압전 폴리머 필름을 이용한 소방관의 호흡률 모니터링

        손근식(Geun-Sik Son),한상희(Sang-Hee Han),차병준(Byung-Jun Cha),맹준호(Jun-Ho Maeng),신현준(Hyun-Jun Shin),우덕하(Deok-Ha Woo),장재성(Jaesung Jang),이상엽(Sang-Youp Lee) 대한기계학회 2013 대한기계학회 춘추학술대회 Vol.2013 No.12

        Firefighters are always exposed to physically and mentally stressful environments resulting in three times higher death rate than any other occupations. Physiological signal monitoring for firefighters is critical and essential to protect firefighters’ lives because more than half of deaths are attributed to stress or overexertion including heart attacks, cerebrovascular events (stroke) or other types of cardio-respiratory system collapse. In current study, we have demonstrated that PVDF wearable sensor can monitor respiration rate successfully. The principle is based on the piezoelectric sensing mechanism to detect the periodical deformations on the chest wall of human body during respirations. For a fabricated sensor involving a 28um thick PVDF film, measured to respiration rate by making the simulator. Respiration simulator at 10 to 90 bpm can make respiration rate. Small changes in the electrical signal output to be punched in the PVDF film. As a result, changes in the length of 1mm were possible to output an electrical signal. PVDF film banding worn on the human body due to aerobic exercise respiration rate was measured. As a whole, this study has developed a PVDF based sensor which was capable of monitoring the respiration rate with high sensitivity. Other distinctive features include its small size, light weight, ease of use and low cost.

      • KCI등재

        영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구

        문수진(Su-jin Moon),이의철(Eui Chul Lee) 인문사회과학기술융합학회 2018 예술인문사회융합멀티미디어논문지 Vol.8 No.10

        영상을 이용한 생체 신호 측정 기술이 발전하고 있으며, 특히 생명 유지를 위한 호흡 신호 측정기술 연구가 지속적으로 진행되고 있다. 기존 기술은 사람의 몸에서 방출하는 열을 측정하는 열화상 카메라를 통하여 호흡 신호를 측정하였다. 또한, 실시간으로 사람의 흉부 움직임을 분석하여 호흡률을 측정하는 연구도 진행되었다. 하지만, 적외선 열화상 영상을 이용하여 영상 처리를 하는 것은 외부 환경 요인으로 인해 호흡 기관의 탐색이 어려울 수 있으며, 이에 따라 호흡률 측정의 정확도가 떨어지는 문제들이 발생했다. 본 연구에서는 호흡 기관의 영역 탐색을 강화하기 위해 가시광 및 적외선 열화상 카메라를 이용하여 영상을 취득하였다. 그리고 두 영상을 기반으로 얼굴 인식, 영상 정합 등의 과정을 통해 호흡 기관 영역의 특징을 추출한다. 추출한 특징 값을 통계학적 분류 방법 중 하나인 k-최근접 이웃 분류기를 통해 호흡 신호의 패턴을 분류한다. 분류한 패턴의 특성에 따라 호흡률을 계산하며, 측정한 호흡률의 성능을 확인하기 위해 실제 호흡률과 비교 과정을 통해 분석함으로써, 호흡률 측정의 가능성을 확인하였다. Biomedical signal measurement technology using images has been developed, and researches on respiration signal measurement technology for maintaining life have been continuously carried out. The existing technology measured respiratory signals through a thermal imaging camera that measures heat emitted from a person s body. In addition, research was conducted to measure respiration rate by analyzing human chest movement in real time. However, the image processing using the infrared thermal image may be difficult to detect the respiratory organ due to the external environmental factors (temperature change, noise, etc.), and thus the accuracy of the measurement of the respiration rate is low.In this study, the images were acquired using visible light and infrared thermal camera to enhance the area of the respiratory tract. Then, based on the two images, features of the respiratory tract region are extracted through processes such as face recognition and image matching. The pattern of the respiratory signal is classified through the k-nearest neighbor classifier, which is one of the statistical classification methods. The respiration rate was calculated according to the characteristics of the classified patterns and the possibility of breathing rate measurement was verified by analyzing the measured respiration rate with the actual respiration rate.

      • KCI등재

        실내 환경 개선을 위한 광도, 이산화탄소 농도 및 배지 종류에 따른 실내 관엽식물들의 광합성 반응

        박신애(Sin-Ae Park),김민지(Min-Gi Kim),류명화(Mung-Hwa Yoo),오명민(Myung-Min Oh),손기철(Ki-Cheol Son) (사)한국생물환경조절학회 2010 생물환경조절학회지 Vol.19 No.4

        본 연구는 관엽식물 4종을 배지종류, 광도 및 이산화탄소 농도를 달리하여 식물의 광합성 반응을 조사하고, 그 결과에 기초하여 실내환경 조절에 효율적인 식물을 선정하고자 실시하였다. 식물재료로는 싱고니움, 디펜바키아, 쉐프렐라 홍콩, 드라세나를 사용하였으며, 성분과 성질이 다른 두 배지(peatmoss, hydroball)에 각각 재배하였다. 광도는 PPFD 0, 30, 50, 80, 100, 200, 400, 600μ㏖ㆍm?²ㆍs?¹의 수준으로 조절하고, 이산화탄소 농도는 0, 50, 100, 200, 400, 700, 1000, 1500μ㏖CO₂의 수준으로 처리하였다. 광도 및 엽육내 CO₂ 농도변화에 따른 관엽식물의 광합성 반응을 조사한 결과, 약광에서의 광합성 능력을 나타내는 순양자수율은 쉐프렐라 홍콩과 디펜바키아에서 높게 나타났으며, 두 실내식물은 고농도의 이산화탄소 환경에서도 다른 두 식물에 비해 높은 광합성율을 기록했다. 드라세나 와네키는 두 조건 모두에서 가장 낮은 광합성 효율을 보였다. 두 배지 처리에 따라서는 각각의 관엽식물에서 엇갈린 광합성 반응이 관찰되었다. 쉐프렐라 홍콩은 피트모스 배지에서 광과 이산화탄소 증가에 따라 하이드로볼 배지에 비해 높은 광합성 속도를 보였지만, 디펜바키아는 그와는 정반대로 하이드로볼 배지에서 더욱 높은 광합성율을 기록했다. 싱고니움의 경우는 광처리에 의해서는 피트모스 배지에서 높은 광합성율을 보였지만 이산화탄소 처리에서는 배 지간 차이가 없었다. 가장 낮은 광합성 효율을 보인 드라세나 와네키는 광에 의한 배지간 차이가 없었으며, 이산화탄소 증가시에는 피트모스에서 다소 높은 광합성율을 보였다. 따라서 실험한 4가지 관엽식물 중 광합성 효율이 가장 높았던 쉐프렐라 홍콩이나 하이드로볼 배지에서 높은 효율을 보인 디펜바키아가 실내 공기정화 및 실내 환경조절에 적합할 것으로 판단된다. This study was performed to investigate photosynthetic responses of 4 foliage plants in relation to light intensity, carbon dioxide concentration, and media, and to select efficient plants for the indoor environment control based on the results. Four foliage plants used in this study included Syngonium podophyllum, Schefflera arboricola cv. Hong Kong, Dieffenbachia amoena, and Dracaena deremensis cv. Warneckii Compacta. The plants cultivated in two different growth media, peatmoss and hydroball, and subjected to various light intensities (0, 30, 50, 80, 100, 200, 400, and 600 μ㏖ㆍm?²ㆍs?¹ PPFD) and CO₂ levels (0, 50, 100, 200, 400, 700, 1000, and 1500 μ㏖CO₂ㆍ㏖?¹). As a result of the photosynthetic rate of foliage plants according to change of light intensity and CO₂ levels, Schefflera arboricola and Dieffenbachia amoena showed high apparent quantum yield, which stands for the photosynthetic rate under low light intensity, and both plants also recorded higher photosynthetic rate under high CO₂ concentration compared to the other two indoor plants. Dracaena deremensis showed the lowest photosynthetic rate under the low light intensity or high CO₂ concentration. There were inconsistent results in photosynthetic rate of foliage plants grown in peatmoss or hydroball. Higher photosynthetic rate was observed in Schefflera arboricola with peatmoss rather than hydroball as light and CO₂ concentration increased. However, hydroball had a positive effect on Dieffenbachia amoena in terms of photosynthetic rate. In case of Syngonium podophyllum, peatmoss induced higher photosynthetic rate according to increased light intensity, but there was no effect of media on the rate under various CO₂ treatements. In contrast, media did not affect to photosynthetic efficiency of Dracaena deremensis subjected to various light intensities and the rate of Dracaena deremensis with peatmoss was a little high when CO₂ concentration increased. In conclusion, potential plants for the indoor air pulification and environ-mental control were Schefflera arboricola and Dieffenbachia amoena because they showed high photosynthetic rate under typical indoor conditions, low light intensity and high CO₂ concentration.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼