RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Probing mechanobiological role of filamin A in migration and invasion of human U87 glioblastoma cells using submicron soft pillars

        Ketebo Abdurazak Aman,Park Chanyong,Kim Jaewon,Jun Myeongjun,Park Sungsu 나노기술연구협의회 2021 Nano Convergence Vol.8 No.19

        Filamin A (FLNa) belongs to an actin-binding protein family in binding and cross-linking actin filaments into a three-dimensional structure. However, little attention has been given to its mechanobiological role in cancer cells. Here, we quantitatively investigated the role of FLNa by analyzing the following parameters in negative control (NC) and FLNa-knockdown (KD) U87 glioma cells using submicron pillars (900 nm diameter and 2 μm height): traction force (TF), rigidity sensing ability, cell aspect ratio, migration speed, and invasiveness. During the initial phase of cell adhesion (< 1 h), FLNa-KD cells polarized more slowly than did NC cells, which can be explained by the loss of rigidity sensing in FLNa-KD cells. The higher motility of FLNa-KD cells relative to NC cells can be explained by the high TF exerted by FLNa-KD cells when compared to NC cells, while the higher invasiveness of FLNa-KD cells relative to NC cells can be explained by a greater number of filopodia in FLNa-KD cells than in NC cells. Our results suggest that FLNa plays important roles in suppressing motility and invasiveness of U87 cells.

      • Organic nano-floating-gate transistor memory with metal nanoparticles

        Van Tho Luu,Baeg Kang-Jun,Noh Yong-Young 나노기술연구협의회 2016 Nano Convergence Vol.3 No.10

        Organic non-volatile memory is advanced topics for various soft electronics applications as lightweight, low-cost, flexible, and printable solid-state data storage media. As a key building block, organic field-effect transistors (OFETs) with a nano-floating gate are widely used and promising structures to store digital information stably in a memory cell. Different types of nano-floating-gates and their various synthesis methods have been developed and applied to fabricate nanoparticle-based non-volatile memory devices. In this review, recent advances in the classes of nano-floating-gate OFET memory devices using metal nanoparticles as charge-trapping sites are briefly reviewed. Details of device fabrication, characterization, and operation mechanisms are reported based on recent research activities reported in the literature.

      • Detection of Cancer Antigens (CA-125) using Gold Nano Particles on Interdigitated Electrode-based Microfluidic Biosensor

        Eon Soo Lee,Md Nasir Uddin Bhuyian,Durgamadhab Misra,Shiqiang Zhua,Harsimranjit Singh,Joo Un Lee,Debdyuti Mandal,Bharath Babu Nunna 나노기술연구협의회 2019 Nano Convergence Vol.6 No.3

        Integrating microfluidics with biosensors is of great research interest with the increasing trend of lab-on-the chip and point-of-care devices. Though there have been numerous studies performed relating microfluidics to the biosensing mechanisms, the study of the sensitivity variation due to microfluidic flow is very much limited. In this paper, the sensitivity of interdigitated electrodes was evaluated at the static drop condition and the microfluidic flow condition. In addition, this study demonstrates the use of gold nanoparticles to enhance the sensor signal response and provides experimental results of the capacitance difference during cancer antigen-125 (CA-125) antigen–antibody conjugation at multiple concentrations of CA-125 antigens. The experimental results also provide evidence of disease-specific detection of CA-125 antigen at multiple concentrations with the increase in capacitive signal response proportional to the concentration of the CA-125 antigens. The capacitive signal response of antigen–antibody conjugation on interdigitate electrodes has been enhanced by approximately 2.8 times (from 260.80 to 736.33 pF at 20 kHz frequency) in static drop condition and approximately 2.5 times (from 205.85 to 518.48 pF at 20 kHz frequency) in microfluidic flow condition with gold nanoparticle-coating. The capacitive signal response is observed to decrease at microfluidic flow condition at both plain interdigitated electrodes (from 260.80 to 205.85 pF at 20 kHz frequency) and gold nano particle coated interdigitated electrodes (from 736.33 to 518.48 pF at 20 kHz frequency), due to the strong shear effect compared to static drop condition. However, the microfluidic channel in the biosensor has the potential to increase the signal to noise ratio due to plasma separation from the whole blood and lead to the increase concentration of the biomarkers in the blood volume for sensing.

      • Nano biosensors for neurochemical monitoring

        Meyyappan M. 나노기술연구협의회 2015 Nano Convergence Vol.2 No.18

        Neurochemicals such as dopamine (DA) and serotonin (S-HT) are linked to disorders such as Parkinson’s disease, epilepsy, addiction and many others. Detection of and monitoring these neurochemicals in vivo and in vitro has become important in treating various disorders. The electroactive nature of DA and S-HT has enabled employing electrochemical techniques to detect them at low concentrations, and a variety of electrodes and approaches have been reported. The use of nanomaterials such as carbon nanotubes, graphene and nanowires has been advocated in recent years for the sensitive detection of neurochemicals. This article reviews the advances in nano biosensors for this application and discusses the future outlook and challenges.

      • KCI등재

        Stabilizing Li-metal host anode with LiF-rich solid electrolyte interphase

        Lee Jaewoo,박민식,Kim Jung Ho 나노기술연구협의회 2021 Nano Convergence Vol.8 No.18

        The development of lithium (Li)-metal anode is high priority research to initiate next-generation Li batteries. Applying Li-metal in practical applications as anode still has many hurdles to clear away, such as low Coulombic efficiency and capacity degradation by the continuous formation of dead Li. We demonstrate that cobalt (Co) nanoparticle incorporation in a porous carbon host anode can play a critical role in the formation of a thick lithium fluoride dominated solid-electrolyte interphase in ether-based electrolyte. As a result, the host anode containing Co nanoparticles shows excellent electrochemical performance with high Li-metal reversible capacity and even stable long-term cyclability with no dead Li formation.

      • KCI등재

        Permeable characteristics of surface film deposited on LiMn2O4 positive electrode revealed by redox-active indicator

        Kim Hyun-seung,양진혁,Han Ji Woo,Thao Le Thi,Ryu Ji Heon,Oh Seung M,Kim Ki Jae 나노기술연구협의회 2021 Nano Convergence Vol.8 No.21

        Herein, the ferrocene redox indicator-based surface film characteristics of spinel lithium manganese oxide (LMO) were evaluated. The pre-cycling of spinel LMO generated a film on the LMO surface. The surface film deposited on LMO surface suppresses further electrolyte decomposition, while the penetration of approximately 0.7 nm-sized redox indicator is not prevented. The facile self-discharge of LMO and regeneration current from the ferrocenium molecule was observed from the redox indicator in a specifically designed four-electrode cell. From this electrochemical behavior, a small-sized HF molecule attack on the LMO surface through a carbonate-based electrolyte-derived film is defined; hence, the prevention of small-sized molecules into the deposited surface film is crucial for the enhancement of LiMn 2 O 4 -based lithium-ion batteries.

      • KCI등재

        Laser-based three-dimensional manufacturing technologies for rechargeable batteries

        Moldovan Dan,Choi Jaeyoo,Choo Youngwoo,김원식,Hwa Yoon 나노기술연구협의회 2021 Nano Convergence Vol.8 No.23

        Laser three-dimensional (3D) manufacturing technologies have gained substantial attention to fabricate 3D structured electrochemical rechargeable batteries. Laser 3D manufacturing techniques offer excellent 3D microstructure controllability, good design flexibility, process simplicity, and high energy and cost efficiencies, which are beneficial for rechargeable battery cell manufacturing. In this review, notable progress in development of the rechargeable battery cells via laser 3D manufacturing techniques is introduced and discussed. The basic concepts and remarkable achievements of four representative laser 3D manufacturing techniques such as selective laser sintering (or melting) techniques, direct laser writing for graphene-based electrodes, laser-induced forward transfer technique and laser ablation subtractive manufacturing are highlighted. Finally, major challenges and prospects of the laser 3D manufacturing technologies for battery cell manufacturing will be provided.

      • KCI등재

        Synergistic nanoarchitecture of mesoporous carbon and carbon nanotubes for lithium–oxygen batteries

        Kim Yeongsu,Yun Jonghyeok,Shin Hyun-Seop,Jung Kyu-Nam,Lee Jong-Won 나노기술연구협의회 2021 Nano Convergence Vol.8 No.17

        A rechargeable lithium–oxygen battery (LOB) operates via the electrochemical formation and decomposition of solid-state Li 2 O 2 on the cathode. The rational design of the cathode nanoarchitectures is thus required to realize high-energy-density and long-cycling LOBs. Here, we propose a cathode nanoarchitecture for LOBs, which is composed of mesoporous carbon (MPC) integrated with carbon nanotubes (CNTs). The proposed design has the advantages of the two components. MPC provides sufficient active sites for the electrochemical reactions and free space for Li 2 O 2 storage, while CNT forests serve as conductive pathways for electron and offer additional reaction sites. Results show that the synergistic architecture of MPC and CNTs leads to improvements in the capacity (~ 18,400 mAh g − 1 ), rate capability, and cyclability (~ 200 cycles) of the CNT-integrated MPC cathode in comparison with MPC.

      • KCI등재

        Real-time monitoring of liver fibrosis through embedded sensors in a microphysiological system

        FAROOQI HAFIZ MUHAMMAD UMER,Kang Bohye,Khalid Muhammad Asad Ullah,Salih Abdul Rahim Chethikkattuveli,Hyun Kinam,박성혁,Huh Dongeun,최경현 나노기술연구협의회 2021 Nano Convergence Vol.8 No.3

        Hepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor β1 (TGF-β1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-β1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.

      • Detection of thioredoxin-1 using ultra-sensitive ELISA with enzyme-encapsulated human serum albumin nanoparticle

        오병근,YongTae Kim,Ju-Won Jeon,Tae-Hwan Kim,Eun-Sol Lee,Myeong-Jun Lee 나노기술연구협의회 2019 Nano Convergence Vol.6 No.37

        Many methods for early diagnosis of the disease use biomarker tests, which measure indicators of biological state in body fluids or blood. However, a limitation of these methods is their low sensitivity to biomarkers. In this study, human serum albumin (HSA) based nanoparticles capable of encapsulating excess horseradish peroxidase (HRP) are synthesized and applied to the development of enzyme-linked immunosorbent assay (ELISA) kit with ultra-high sensitivity. The size of the nanoparticles and the amount of encapsulated enzyme are controlled by varying the synthesis conditions of pH and protein concentration, and the surface of the nanoparticles is modified with protein A (proA) to immobilize antibodies to the nanoparticles by self-assembly. Using the synthesized nanoparticles, the biomarker of breast cancer, thioredoxin-1, can be measured in the range of 10 fM to 100 pM by direct sandwich ELISA, which is 105 times more sensitive than conventional methods.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼