RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Feedback Analysis of Transcutaneous Energy Transmission with a Variable Load Parameter

        Tianliang Yang,Chunyu Zhao,Dayue Chen 한국전자통신연구원 2010 ETRI Journal Vol.32 No.4

        The transcutaneous energy transmission system (TETS) composed of a Class-E amplifier may operate at a state away from the optimum power transmission due to the load variation. By introducing the feedback-loop technique, the TETS can keep the optimum state with constant output voltage by adjusting the important design parameters, that is, the duty ratio and frequency of the driving signal and the supply voltage. The relations between these adjusted parameters and the load are investigated. The effectiveness of the feedback technique is validated through a design example with a variable load parameter. The experimental results show that the Class-E amplifier in the feedback loop can keep operating at the optimum state under the condition of up to 50 percent variation of the load value.

      • KCI등재

        Improvement of comprehensive performance of compound green soil in sponge city

        Lei Zhang,Zhicheng Li,Tianliang Yang,Ping Yang 대한환경공학회 2021 Environmental Engineering Research Vol.26 No.5

        Large-scale constructions of urbanization increase the impervious areas of city, leading to the urban hydrological effects such as urban waterlogging and rainwater runoff pollution. To this end, China proposed to adopt the measure to build sponge cities. However, the existing green soil cannot meet the comprehensive needs of sponge city. In order to quickly evaluate the comprehensive performance of the soil in sponge city, a comprehensive evaluation criterion was designed, which is related to the characteristics of greening soil permeability, porosity, pH, salinity and fertility. Based on the criterion, a new type of composite green soil was obtained with the silt soil: medium sand: sawdust ratio of 72.5%: 20%: 7.5%. Finally, compared with the existing soil, the new green soil not only meets the comprehensive performance requirements of the green soil’s fertility, pH, permeability and other factors, but also has higher permeability and water retention. It was proved that the new green soil has apparent advantages in the control of rainwater.

      • KCI등재

        Downregulation of cellular prion protein inhibited the proliferation and invasion and induced apoptosis of Marek’s disease virus-transformed avian T cells

        Xuerui Wan,Runxia Yang,Guilin Liu,Manling Zhu,Tianliang Zhang,Lei Liu,Run Wu 대한수의학회 2016 Journal of Veterinary Science Vol.17 No.2

        Cellular prion protein (PrPC) is ubiquitously expressed in the cytomembrane of a considerable number of eukaryotic cells. Although several studies have investigated the functions of PrPC in cell proliferation, cell apoptosis, and tumorigenesis of mammals, the correlated functions of chicken PrPC (chPrPC) remain unknown. In this study, stable chPrPC-downregulated Marek’s disease (MD) virus-transformed avian T cells (MSB1-SiRNA-3) were established by introducing short interfering RNA (SiRNA) targeting chicken prion protein genes. We found that downregulation of chPrPC inhibits proliferation, invasion, and migration, and induces G1 cell cycle phase arrest and apoptosis of MSB1-SiRNA-3 cells compared with Marek’s disease virus-transformed avian T cells (MSB1) and negative control cells. To the best of our knowledge, the present study provides the first evidence supporting the positive correlation between the expression level of chPrPC and the proliferation, migration, and invasion ability of MSB1 cells, but appears to protect MSB1 cells from apoptosis, which suggests it functions in the formation and development of MD tumors. This evidence may contribute to future research into the specific molecular mechanisms of chPrPC in the formation and development of MD tumors.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼