RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보 SCOPUS

      Methodology to quantify rock behavior around shallow tunnels by Rock Engineering Systems

      한글로보기

      https://www.riss.kr/link?id=A104637643

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      For quantitative identification of rock behavior in shallow tunnels, we recommend using the rock behavior index (RBI) within the Rock Engineering Systems (RES) approach. RES can aid engineers in effectively determining complex and un-structured rock b...

      For quantitative identification of rock behavior
      in shallow tunnels, we recommend using the rock behavior index
      (RBI) within the Rock Engineering Systems (RES)
      approach. RES can aid engineers in effectively determining
      complex and un-structured rock behavior utilizing interaction
      matrices. Rock behavior types can be classified into three
      groups: cave-in, rock fall and plastic deformation. Seven parameters
      influence rock behavior: rock mass compressive
      strength, rock quality designation (RQD), joint surface condition,
      stress, ground water, earthquake, and tunnel span. An
      advantage of RES is its ability to obtain each parameter’s
      weighting. We quantified the rock behavior into RBI on fall,
      cave-in, and plastic deformation. The study results demonstrate
      that RES can give engineers quantitative information on
      rock behavior. The proposed model is illustrated via a case
      study on Seoul Metro Line 9.

      더보기

      다국어 초록 (Multilingual Abstract)

      For quantitative identification of rock behavior in shallow tunnels, we recommend using the rock behavior index (RBI) within the Rock Engineering Systems (RES) approach. RES can aid engineers in effectively determining complex and un-structured ro...

      For quantitative identification of rock behavior
      in shallow tunnels, we recommend using the rock behavior index
      (RBI) within the Rock Engineering Systems (RES)
      approach. RES can aid engineers in effectively determining
      complex and un-structured rock behavior utilizing interaction
      matrices. Rock behavior types can be classified into three
      groups: cave-in, rock fall and plastic deformation. Seven parameters
      influence rock behavior: rock mass compressive
      strength, rock quality designation (RQD), joint surface condition,
      stress, ground water, earthquake, and tunnel span. An
      advantage of RES is its ability to obtain each parameter’s
      weighting. We quantified the rock behavior into RBI on fall,
      cave-in, and plastic deformation. The study results demonstrate
      that RES can give engineers quantitative information on
      rock behavior. The proposed model is illustrated via a case
      study on Seoul Metro Line 9.

      더보기

      참고문헌 (Reference)

      1 Kaiser P. K., "Underground works in hard rock tunneling and mining" 2000

      2 Matthew, M., "The River Test Catchment Surveillance Project, South Water Utilities Final Research Report" Department of Civil Engineering, University of Surrey 101-, 1998

      3 Martin C. D., "Stress, instability and design of underground excavations" 40 : 1027-1047, 2003

      4 Goel R. K., "Status of tunnelling and underground construction activities and technologies in India" 16 : 63-75, 2001

      5 Hudson, J. A., "Rock Mechanics Principles in Engineering Practice, In CIRIA Ground Engineering Report: Underground Construction" 1989

      6 Skagius, K., "Performance assessment of the geosphere barrier of deep geological repository for spent fuel. The use of interaction matrices for identification, structuring and ranking of features, events and processes" 176 : 155-162, 1997

      7 Goricki A., "New developments for the design and construction of tunnels in complex rock masses" 41 (41): 720-725, 2004

      8 Sakuri S., "Lessons learned from field measurements in tunnelling" 12 : 453-460, 1997

      9 Martin, C. D., "Hoek‐Brown parameters for predicting the depth of brittle failure around tunnels" 36 (36): 136-151, 1999

      10 Stille H., "Ground behavior and rock mass composition in underground excavations" 23 : 46-64, 2008

      1 Kaiser P. K., "Underground works in hard rock tunneling and mining" 2000

      2 Matthew, M., "The River Test Catchment Surveillance Project, South Water Utilities Final Research Report" Department of Civil Engineering, University of Surrey 101-, 1998

      3 Martin C. D., "Stress, instability and design of underground excavations" 40 : 1027-1047, 2003

      4 Goel R. K., "Status of tunnelling and underground construction activities and technologies in India" 16 : 63-75, 2001

      5 Hudson, J. A., "Rock Mechanics Principles in Engineering Practice, In CIRIA Ground Engineering Report: Underground Construction" 1989

      6 Skagius, K., "Performance assessment of the geosphere barrier of deep geological repository for spent fuel. The use of interaction matrices for identification, structuring and ranking of features, events and processes" 176 : 155-162, 1997

      7 Goricki A., "New developments for the design and construction of tunnels in complex rock masses" 41 (41): 720-725, 2004

      8 Sakuri S., "Lessons learned from field measurements in tunnelling" 12 : 453-460, 1997

      9 Martin, C. D., "Hoek‐Brown parameters for predicting the depth of brittle failure around tunnels" 36 (36): 136-151, 1999

      10 Stille H., "Ground behavior and rock mass composition in underground excavations" 23 : 46-64, 2008

      11 Palmstrom A., "Ground behavior and rock engineering tools for underground excavations" 22 : 363-376, 2007

      12 Poschl I., "Geotechnical risk in rock mass characterization‐a concept" 145-154, 2004

      13 Cai M., "Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system" 41 : 3-19, 2004

      14 Singh M., "Critical strain and squeezing of rock mass in tunnels" 22 : 343-350, 2007

      15 Davies, J. P., "Application of interaction matrices to the problem of sewer collapse" 11-, 1999

      16 Benardos A. G., "A methodology for assessing geotechnical hazards for TBM tunneling‐illustrated by Athens Metro, Greece" 41 : 987-999, 2004

      17 Leopold, L. B., "A Procedure for Evaluating Environmental Impact" Government Printing Office 1971

      18 Hudson, J. A., "A New Approach to Studying Complete Rock Engineering Problems" 25 : 93-105, 1992

      19 Mazzoccola, D. F., "A Comprehensive Method of Rock Mass Characterization for Indicating Natural Slope Instability" 29 : 37-56, 1996

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-06-13 학회명변경 한글명 : 한국지구시스템공학회 -> 한국자원공학회
      영문명 : The Korean Society For Geosystem Engineering -> The Korean Society of Mineral and Energy Resources Engineers
      KCI등재
      2013-01-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2010-03-01 평가 등재후보 탈락 (등재후보1차)
      2008-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2007-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2005-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.2 0.2 0.16
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.15 0.13 0.347 0.21
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼