RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS KCI등재

      An Improved Non-parametric Bayesian Independence Test for Probabilistic Learning of the Dependence Structure Among Continuous Random Variables

      한글로보기

      https://www.riss.kr/link?id=A107417750

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Probabilistic analysis of real-world complex systems such as civil infrastructures requires an effective identification of dependence among the input random variables. The correct modelling of such dependence is crucial for the accuracy and e...

      <P>Probabilistic analysis of real-world complex systems such as civil infrastructures requires an effective identification of dependence among the input random variables. The correct modelling of such dependence is crucial for the accuracy and efficiency of a probabilistic assessment and decision-support. In particular, deciding if a pair of random variables is independent is an important step, and several methodologies have been developed for this task. The non-parametric Bayesian independence test is noteworthy among these, since it can deal with data sets whose distributions are unknown and it provides posterior probabilities of independence, which can be helpful in decision making. This paper first summarizes the general procedure of the nonparametric Bayesian independence test, and then examines the application of various types of non-informative priors - uniform, Jeffreys' and reference priors - from both the theoretical and numerical viewpoint. In the end, the reference prior is recommended as the most suitable prior distribution for the purpose of Bayesian independence test. Furthermore, efficient and accurate discretization algorithms are proposed to facilitate a non-parametric Bayesian independence test of continuous random variables. Five numerical examples are studied to test the validity of the priors, and demonstrate the accuracy and efficiency of the proposed test algorithms. The supporting source codes and data used in the numerical examples are available for download at code.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼