RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Handbook of green analytical chemistry

      한글로보기

      https://www.riss.kr/link?id=M13018398

      • 저자
      • 발행사항

        Chichester, West Sussex, UK ; Hoboken : John Wiley & Sons, 2012

      • 발행연도

        2012

      • 작성언어

        영어

      • 주제어
      • DDC

        543 판사항(21)

      • ISBN

        9780470972014 (cloth)

      • 자료형태

        일반단행본

      • 발행국(도시)

        England

      • 서명/저자사항

        Handbook of green analytical chemistry / edited by Miguel de la Guardia, Salvador Garrigues.

      • 형태사항

        xx, 564 p. : ill. ; 26 cm.

      • 일반주기명

        Includes bibliographical references and index.

      • 소장기관
        • 가톨릭대학교 성심교정도서관(중앙) 소장기관정보
        • 경희대학교 국제캠퍼스 도서관 소장기관정보
        • 국민대학교 성곡도서관 소장기관정보 대출가능권수
        • 부산대학교 중앙도서관 소장기관정보
        • 서울대학교 중앙도서관 소장기관정보 Deep Link
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • 자료제공 : aladin
      • List of Contributors xv Preface xix Section I: Concepts 1 1 The Concept of Green Analytical Chemistry 3
        Miguel de la Guardia and Salvador Garrigues 1.1 Green Analytical Chemistry in the frame of Green Chemistry 3 1.2 Green Analytical Chemistry versus Analytical Chemistry 7 1.3 The ethical compromise of sustainability 9 1.4 The business opportunities of clean methods 11 1.5 The attitudes of the scientific community 12 References 14 2 Education in Green Analytical Chemistry 17
        Miguel de la Guardia and Salvador Garrigues 2.1 The structure of the Analytical Chemistry paradigm 17 2.2 The social perception of Analytical Chemistry 20 2.3 Teaching Analytical Chemistry 21 2.4 Teaching Green Analytical Chemistry 25 2.5 From the bench to the real world 26 2.6 Making sustainable professionals for the future 28 References 29 3 Green Analytical Laboratory Experiments 31
        Suparna Dutta and Arabinda K. Das 3.1 Greening the university laboratories 31 3.2 Green laboratory experiments 33 3.2.1 Green methods for sample pretreatment 33 3.2.2 Green separation using liquid-liquid, solid-phase and solventless extractions 37 3.2.3 Green alternatives for chemical reactions 42 3.2.4 Green spectroscopy 45 3.3 The place of Green Analytical Chemistry in the future of our laboratories 52 References 52 4 Publishing in Green Analytical Chemistry 55
        Salvador Garrigues and Miguel de la Guardia 4.1 A bibliometric study of the literature in Green Analytical Chemistry 56 4.2 Milestones of the literature on Green Analytical Chemistry 57 4.3 The need for powerful keywords 61 4.4 A new attitude of authors faced with green parameters 62 4.5 A proposal for editors and reviewers 64 4.6 The future starts now 65 References 66 Section II: The Analytical Process 67 5 Greening Sampling Techniques 69
        José Luis Gómez Ariza and Tamara García Barrera 5.1 Greening analytical chemistry solutions for sampling 70 5.2 New green approaches to reduce problems related to sample losses, sample contamination, transport and storage 70 5.2.1 Methods based on flow-through solid phase spectroscopy 70 5.2.2 Methods based on hollow-fiber GC/HPLC/CE 71 5.2.3 Methods based on the use of nanoparticles 75 5.3 Greening analytical in-line systems 76 5.4 In-field sampling 77 5.5 Environmentally friendly sample stabilization 79 5.6 Sampling for automatization 79 5.7 Future possibilities in green sampling 80 References 80 6 Direct Analysis of Samples 85
        Sergio Armenta and Miguel de la Guardia 6.1 Remote environmental sensing 85 6.1.1 Synthetic Aperture Radar (SAR) images (satellite sensors) 86 6.1.2 Open-path spectroscopy 86 6.1.3 Field-portable analyzers 90 6.2 Process monitoring: in-line, on-line and at-line measurements 91 6.2.1 NIR spectroscopy 92 6.2.2 Raman spectroscopy 92 6.2.3 MIR spectroscopy 93 6.2.4 Imaging technology and image analysis 93 6.3 At-line non-destructive or quasi non-destructive measurements 94 6.3.1 Photoacoustic Spectroscopy (PAS) 94 6.3.2 Ambient Mass Spectrometry (MS) 95 6.3.3 Solid sampling plasma sources 95 6.3.4 Nuclear Magnetic Resonance (NMR) 96 6.3.5 X-ray spectroscopy 96 6.3.6 Other surface analysis techniques 97 6.4 New challenges in direct analysis 97 References 98 7 Green Analytical Chemistry Approaches in Sample Preparation 103
        Marek Tobiszewski, Agata Mechlinska and Jacek Namiesnik 7.1 About sample preparation 103 7.2 Miniaturized extraction techniques 104 7.2.1 Solid-phase extraction (SPE) 104 7.2.2 Solid-phase microextraction (SPME) 105 7.2.3 Stir-bar sorptive extraction (SBSE) 106 7.2.4 Liquid-liquid microextraction 106 7.2.5 Membrane extraction 108 7.2.6 Gas extraction 109 7.3 Alternative solvents 113 7.3.1 Analytical applications of ionic liquids 113 7.3.2 Supercritical fluid extraction 114 7.3.3 Subcritical water extraction 115 7.3.4 Fluorous phases 116 7.4 Assisted extractions 117 7.4.1 Microwave-assisted extraction 117 7.4.2 Ultrasound-assisted extraction 117 7.4.3 Pressurized liquid extraction 118 7.5 Final remarks 119 References 119 8 Green Sample Preparation with Non-Chromatographic Separation Techniques 125
        María Dolores Luque de Castro and Miguel Alcaide Molina 8.1 Sample preparation in the frame of the analytical process 125 8.2 Separation techniques involving a gas–liquid interface 127 8.2.1 Gas diffusion 127 8.2.2 Pervaporation 127 8.2.3 Membrane extraction with a sorbent interface 130 8.2.4 Distillation and microdistillation 131 8.2.5 Head-space separation 131 8.2.6 Hydride generation and cold-mercury vapour formation 133 8.3 Techniques involving a liquid–liquid interface 133 8.3.1 Dialysis and microdialysis 133 8.3.2 Liquid–liquid extraction 134 8.3.3 Single-drop microextraction 137 8.4 Techniques involving a liquid–solid interface 139 8.4.1 Solid-phase extraction 139 8.4.2 Solid-phase microextraction 141 8.4.3 Stir-bar sorptive extraction 142 8.4.4 Continuous filtration 143 8.5 A Green future for sample preparation 145 References 145 9 Capillary Electrophoresis 153
        Mihkel Kaljurand 9.1 The capillary electrophoresis separation techniques 153 9.2 Capillary electrophoresis among other liquid phase separation methods 155 9.2.1 Basic instrumentation for liquid phase separations 155 9.2.2 CE versus HPLC from the point of view of Green Analytical Chemistry 156 9.2.3 CE as a method of choice for portable instruments 159 9.2.4 World-to-chip interfacing and the quest for a ‘killer’ application for LOC devices 163 9.2.5 Gradient elution moving boundary electrophoresis and electrophoretic exclusion 165 9.3 Possible ways of surmounting the disadvantages of CE 167 9.4 Sample preparation in CE 168 9.5 Is capillary electrophoresis a green alternative? 169 References 170 10 Green Chromatography 175
        Chi-Yu Lu 10.1 Greening liquid chromatography 175 10.2 Green solvents 176 10.2.1 Hydrophilic solvents 176 10.2.2 Ionic liquids 177 10.2.3 Supercritical Fluid Chromatography (SFC) 177 10.3 Green instruments 178 10.3.1 Microbore Liquid Chromatography (microbore LC) 179 10.3.2 Capillary Liquid Chromatography (capillary LC) 180 10.3.3 Nano Liquid Chromatography (nano LC) 181 10.3.4 How to transfer the LC condition from traditional LC to microbore LC, capillary LC or nano LC 182 10.3.5 Homemade micro-scale analytical system 183 10.3.6 Ultra Performance Liquid Chromatography (UPLC) 184 References 185 11 Green Analytical Atomic Spectrometry 199
        Martín Resano, Esperanza García-Ruiz and Miguel A. Belarra 11.1 Atomic spectrometry in the context of Green Analytical Chemistry 199 11.2 Improvements in sample pretreatment strategies 202 11.2.1 Specific improvements 202 11.2.2 Slurry methods 204 11.3 Direct solid sampling techniques 205 11.3.1 Basic operating principles of the techniques discussed 205 11.3.2 Sample requirements and pretreatment strategies 207 11.3.3 Analyte monitoring: The arrival of high-resolution continuum source atomic absorption spectrometry 208 11.3.4 Calibration 210 11.3.5 Selected applications 210 11.4 Future for green analytical atomic spectrometry 213 References 215 12 Solid Phase Molecular Spectroscopy 221
        Antonio Molina-Díaz, Juan Francisco García-Reyes and Natividad Ramos-Martos 12.1 Solid phase molecular spectroscopy: an approach to Green Analytical Chemistry 221 12.2 Fundamentals of solid phase molecular spectroscopy 222 12.2.1 Solid phase absorption (spectrophotometric) procedures 222 12.2.2 Solid phase emission (fluorescence) procedures 225 12.3 Batch mode procedures 225 12.4 Flow mode procedures 226 12.4.1 Monitoring an intrinsic property 227 12.4.2 Monitoring derivative species 231 12.4.3 Recent flow-SPMS based approaches 232 12.5 Selected examples of application of solid phase molecular spectroscopy 233 12.6 The potential of flow solid phase envisaged from the point of view of Green Analytical Chemistry 235 References 240 13 Derivative Techniques in Molecular Absorption, Fluorimetry and Liquid Chromatography as Tools for Green Analytical Chemistry 245
        José Manuel Cano Pavón, Amparo García de Torres, Catalina Bosch Ojeda, Fuensanta Sánchez Rojas and Elisa I. Vereda Alonso 13.1 The derivative technique as a tool for Green Analytical Chemistry 245 13.1.1 Theoretical aspects 246 13.2 Derivative absorption spectrometry in the UV-visible region 247 13.2.1 Strategies to greener derivative spectrophotometry 248 13.3 Derivative fluorescence spectrometry 250 13.3.1 Derivative synchronous fluorescence spectrometry 251 13.4 Use of derivative signal techniques in liquid chromatography 254 References 255 14 Greening Electroanalytical Methods 261
        Paloma Yáñez-Sedeño, José M. Pingarrón and Lucas Hernández 14.1 Towards a more environmentally friendly electroanalysis 261 14.2 Electrode materials 262 14.2.1 Alternatives to mercury electrodes 262 14.2.2 Nanomaterial-based electrodes 268 14.3 Solvents 270 14.3.1 Ionic liquids 271 14.3.2 Supercritical fluids 273 14.4 Electrochemical detection in flowing solutions 274 14.4.1 Injection techniques 274 14.4.2 Miniaturized systems 276 14.5 Biosensors 278 14.5.1 Greening biosurface preparation 278 14.5.2 Direct electrochemical transfer of proteins 281 14.6 Future trends in green electroanalysis 282 References 282 Section III: Strategies 289 15 Energy Savings in Analytical Chemistry 291
        Mihkel Koel 15.1 Energy consumption in analytical methods 291 15.2 Economy and saving energy in laboratory practice 294 15.2.1 Good housekeeping, control and maintenance 295 15.3 Alternative sources of energy for processes 296 15.3.1 Using microwaves in place of thermal heating 297 15.3.2 Using ultrasound in sample treatment 299 15.3.3 Light as a source of energy 301 15.4 Using alternative solvents for energy savings 302 15.4.1 Advantages of ionic liquids 303 15.4.2 Using subcritical and supercritical fluids 303 15.5 Efficient laboratory equipment 305 15.5.1 Trends in sample treatment 306 15.6 Effects of automation and micronization on energy consumption 307 15.6.1 Miniaturization in sample treatment 308 15.6.2 Using sensors 310 15.7 Assessment of energy efficiency 312 References 316 16 Green Analytical Chemistry and Flow Injection Methodologies 321
        Luis Dante Martínez, Soledad Cerutti and Raúl Andrés Gil 16.1 Progress of automated techniques for Green Analytical Chemistry 321 16.2 Flow injection analysis 322 16.3 Sequential injection analysis 325 16.4 Lab-on-valve 327 16.5 Multicommutation 328 16.6 Conclusions and remarks 334 References 334 17 Miniaturization 339
        Alberto Escarpa, Miguel Ángel López and Lourdes Ramos 17.1 Current needs and pitfalls in sample preparation 340 17.2 Non-integrated approaches for miniaturized sample preparation 341 17.2.1 Gaseous and liquid samples 341 17.2.2 Solid samples 350 17.3 Integrated approaches for sample preparation on microfluidic platforms 353 17.3.1 Microfluidic platforms in sample preparation process 353 17.3.2 The isolation of analyte from the sample matrix: filtering approaches 356 17.3.3 The isolation of analytes from the sample matrix: extraction approaches 360 17.3.4 Preconcentration approaches using electrokinetics 365 17.3.5 Derivatization schemes on microfluidic platforms 372 17.3.6 Sample preparation in cell analysis 373 17.4 Final remarks 378 References 379 18 Micro- and Nanomaterials Based Detection Systems Applied in Lab-on-a-Chip Technology 389
        Mariana Medina-Sánchez and Arben Merkoçi 18.1 Micro- and nanotechnology in Green Analytical Chemistry 389 18.2 Nanomaterials-based (bio)sensors 390 18.2.1 Optical nano(bio)sensors 391 18.2.2 Electrochemical nano(bio)sensors 393 18.2.3 Other detection principles 395 18.3 Lab-on-a-chip (LOC) technology 396 18.3.1 Miniaturization and nano-/microfluidics 396 18.3.2 Micro- and nanofabrication techniques 397 18.4 LOC applications 398 18.4.1 LOCs with optical detections 398 18.4.2 LOCs with electrochemical detectors 398 18.4.3 LOCs with other detections 399 18.5 Conclusions and future perspectives 400 References 401 19 Photocatalytic Treatment of Laboratory Wastes Containing Hazardous Organic Compounds 407
        Edmondo Pramauro, Alessandra Bianco Prevot and Debora Fabbri 19.1 Photocatalysis 407 19.2 Fundamentals of the photocatalytic process 408 19.3 Limits of the photocatalytic treatment 408 19.4 Usual photocatalytic procedure in laboratory practice 408 19.4.1 Solar detoxification of laboratory waste 409 19.5 Influence of experimental parameters 411 19.5.1 Dissolved oxygen 411 19.5.2 pH 411 19.5.3 Catalyst concentration 412 19.5.4 Degradation kinetics 412 19.6 Additives reducing the e−/h+ recombination 412 19.7 Analytical control of the photocatalytic treatment 413 19.8 Examples of possible applications of photocatalysis to the treatment of laboratory wastes 413 19.8.1 Percolates containing soluble aromatic contaminants 414 19.8.2 Photocatalytic destruction of aromatic amine residues in aqueous wastes 414 19.8.3 Degradation of aqueous wastes containing pesticides residue 415 19.8.4 The peculiar behaviour of triazine herbicides 416 19.8.5 Treatment of aqueous wastes containing organic solvent residues 416 19.8.6 Treatment of surfactant-containing aqueous wastes 416 19.8.7 Degradation of aqueous solutions of azo-dyes 419 19.8.8 Treatment of laboratory waste containing pharmaceuticals 419 19.9 Continuous monitoring of photocatalytic treatment 420 References 420 Section IV: Fields of Application 425 20 Green Bioanalytical Chemistry 427
        Tadashi Nishio and Hideko Kanazawa 20.1 The analytical techniques in bioanalysis 427 20.2 Environmental-responsive polymers 428 20.3 Preparation of a polymer-modified surface for the stationary phase of environmental-responsive chromatography 430 20.4 Temperature-responsive chromatography for green analytical methods 432 20.5 Biological analysis by temperature-responsive chromatography 432 20.5.1 Analysis of propofol in plasma using water as a mobile phase 434 20.5.2 Contraceptive drugs analysis using temperature gradient chromatography 435 20.6 Affinity chromatography for green bioseparation 436 20.7 Separation of biologically active molecules by the green chromatographic method 438 20.8 Protein separation by an aqueous chromatographic system 441 20.9 Ice chromatography 442 20.10 High-temperature liquid chromatography 443 20.11 Ionic liquids 443 20.12 The future in green bioanalysis 444 References 444 21 Infrared Spectroscopy in Biodiagnostics: A Green Analytical Approach 449
        Mohammadreza Khanmohammadi and Amir Bagheri Garmarudi 21.1 Infrared spectroscopy capabilities 449 21.2 Infrared spectroscopy of bio-active chemicals in a bio-system 451 21.3 Medical analysis of body fluids by infrared spectroscopy 453 21.3.1 Blood and its extracts 455 21.3.2 Urine 457 21.3.3 Other body fluids 457 21.4 Diagnosis in tissue samples via IR spectroscopic analysis 457 21.4.1 Main spectral characteristics 459 21.4.2 The role of data processing 460 21.4.3 Cancer diagnosis by FTIR spectrometry 465 21.5 New trends in infrared spectroscopy assisted biodiagnostics 468 References 470 22 Environmental Analysis 475
        Ricardo Erthal Santelli, Marcos Almeida Bezerra, Julio Carlos Afonso, Maria de Fátima Batista de Carvalho, Eliane Padua Oliveira and Aline Soares Freire 22.1 Pollution and its control 475 22.2 Steps of an environmental analysis 476 22.2.1 Sample collection 476 22.2.2 Sample preparation 476 22.2.3 Analysis 479 22.3 Green environmental analysis for water, wastewater and effluent 480 22.3.1 Major mineral constituents 480 22.3.2 Trace metal ions 481 22.3.3 Organic pollutants 483 22.4 Green environmental analysis applied for solid samples 485 22.4.1 Soil 485 22.4.2 Sediments 488 22.4.3 Wastes 492 22.5 Green environmental analysis applied for atmospheric samples 496 22.5.1 Gases 496 22.5.2 Particulates 497 References 497 23 Green Industrial Analysis 505
        Sergio Armenta and Miguel de la Guardia 23.1 Greening industrial practices for safety and cost reasons 505 23.2 The quality control of raw materials and end products 506 23.3 Process control 510 23.4 Effluent control 511 23.5 Working atmosphere control 514 23.6 The future starts now 515 References 515 Index 519
      • 자료제공 : aladin
      • List of Contributors xv Preface xix Section I: Concepts 1 1 The Concept of Green Analytical Chemistry 3
        Miguel de la Guardia and Salvador Garrigues 1.1 Green Analytical Chemistry in the frame of Green Chemistry 3 1.2 Green Analytical Chemistry versus Analytical Chemistry 7 1.3 The ethical compromise of sustainability 9 1.4 The business opportunities of clean methods 11 1.5 The attitudes of the scientific community 12 References 14 2 Education in Green Analytical Chemistry 17
        Miguel de la Guardia and Salvador Garrigues 2.1 The structure of the Analytical Chemistry paradigm 17 2.2 The social perception of Analytical Chemistry 20 2.3 Teaching Analytical Chemistry 21 2.4 Teaching Green Analytical Chemistry 25 2.5 From the bench to the real world 26 2.6 Making sustainable professionals for the future 28 References 29 3 Green Analytical Laboratory Experiments 31
        Suparna Dutta and Arabinda K. Das 3.1 Greening the university laboratories 31 3.2 Green laboratory experiments 33 3.2.1 Green methods for sample pretreatment 33 3.2.2 Green separation using liquid-liquid, solid-phase and solventless extractions 37 3.2.3 Green alternatives for chemical reactions 42 3.2.4 Green spectroscopy 45 3.3 The place of Green Analytical Chemistry in the future of our laboratories 52 References 52 4 Publishing in Green Analytical Chemistry 55
        Salvador Garrigues and Miguel de la Guardia 4.1 A bibliometric study of the literature in Green Analytical Chemistry 56 4.2 Milestones of the literature on Green Analytical Chemistry 57 4.3 The need for powerful keywords 61 4.4 A new attitude of authors faced with green parameters 62 4.5 A proposal for editors and reviewers 64 4.6 The future starts now 65 References 66 Section II: The Analytical Process 67 5 Greening Sampling Techniques 69
        José Luis Gómez Ariza and Tamara García Barrera 5.1 Greening analytical chemistry solutions for sampling 70 5.2 New green approaches to reduce problems related to sample losses, sample contamination, transport and storage 70 5.2.1 Methods based on flow-through solid phase spectroscopy 70 5.2.2 Methods based on hollow-fiber GC/HPLC/CE 71 5.2.3 Methods based on the use of nanoparticles 75 5.3 Greening analytical in-line systems 76 5.4 In-field sampling 77 5.5 Environmentally friendly sample stabilization 79 5.6 Sampling for automatization 79 5.7 Future possibilities in green sampling 80 References 80 6 Direct Analysis of Samples 85
        Sergio Armenta and Miguel de la Guardia 6.1 Remote environmental sensing 85 6.1.1 Synthetic Aperture Radar (SAR) images (satellite sensors) 86 6.1.2 Open-path spectroscopy 86 6.1.3 Field-portable analyzers 90 6.2 Process monitoring: in-line, on-line and at-line measurements 91 6.2.1 NIR spectroscopy 92 6.2.2 Raman spectroscopy 92 6.2.3 MIR spectroscopy 93 6.2.4 Imaging technology and image analysis 93 6.3 At-line non-destructive or quasi non-destructive measurements 94 6.3.1 Photoacoustic Spectroscopy (PAS) 94 6.3.2 Ambient Mass Spectrometry (MS) 95 6.3.3 Solid sampling plasma sources 95 6.3.4 Nuclear Magnetic Resonance (NMR) 96 6.3.5 X-ray spectroscopy 96 6.3.6 Other surface analysis techniques 97 6.4 New challenges in direct analysis 97 References 98 7 Green Analytical Chemistry Approaches in Sample Preparation 103
        Marek Tobiszewski, Agata Mechlinska and Jacek Namiesnik 7.1 About sample preparation 103 7.2 Miniaturized extraction techniques 104 7.2.1 Solid-phase extraction (SPE) 104 7.2.2 Solid-phase microextraction (SPME) 105 7.2.3 Stir-bar sorptive extraction (SBSE) 106 7.2.4 Liquid-liquid microextraction 106 7.2.5 Membrane extraction 108 7.2.6 Gas extraction 109 7.3 Alternative solvents 113 7.3.1 Analytical applications of ionic liquids 113 7.3.2 Supercritical fluid extraction 114 7.3.3 Subcritical water extraction 115 7.3.4 Fluorous phases 116 7.4 Assisted extractions 117 7.4.1 Microwave-assisted extraction 117 7.4.2 Ultrasound-assisted extraction 117 7.4.3 Pressurized liquid extraction 118 7.5 Final remarks 119 References 119 8 Green Sample Preparation with Non-Chromatographic Separation Techniques 125
        María Dolores Luque de Castro and Miguel Alcaide Molina 8.1 Sample preparation in the frame of the analytical process 125 8.2 Separation techniques involving a gas–liquid interface 127 8.2.1 Gas diffusion 127 8.2.2 Pervaporation 127 8.2.3 Membrane extraction with a sorbent interface 130 8.2.4 Distillation and microdistillation 131 8.2.5 Head-space separation 131 8.2.6 Hydride generation and cold-mercury vapour formation 133 8.3 Techniques involving a liquid–liquid interface 133 8.3.1 Dialysis and microdialysis 133 8.3.2 Liquid–liquid extraction 134 8.3.3 Single-drop microextraction 137 8.4 Techniques involving a liquid–solid interface 139 8.4.1 Solid-phase extraction 139 8.4.2 Solid-phase microextraction 141 8.4.3 Stir-bar sorptive extraction 142 8.4.4 Continuous filtration 143 8.5 A Green future for sample preparation 145 References 145 9 Capillary Electrophoresis 153
        Mihkel Kaljurand 9.1 The capillary electrophoresis separation techniques 153 9.2 Capillary electrophoresis among other liquid phase separation methods 155 9.2.1 Basic instrumentation for liquid phase separations 155 9.2.2 CE versus HPLC from the point of view of Green Analytical Chemistry 156 9.2.3 CE as a method of choice for portable instruments 159 9.2.4 World-to-chip interfacing and the quest for a ‘killer’ application for LOC devices 163 9.2.5 Gradient elution moving boundary electrophoresis and electrophoretic exclusion 165 9.3 Possible ways of surmounting the disadvantages of CE 167 9.4 Sample preparation in CE 168 9.5 Is capillary electrophoresis a green alternative? 169 References 170 10 Green Chromatography 175
        Chi-Yu Lu 10.1 Greening liquid chromatography 175 10.2 Green solvents 176 10.2.1 Hydrophilic solvents 176 10.2.2 Ionic liquids 177 10.2.3 Supercritical Fluid Chromatography (SFC) 177 10.3 Green instruments 178 10.3.1 Microbore Liquid Chromatography (microbore LC) 179 10.3.2 Capillary Liquid Chromatography (capillary LC) 180 10.3.3 Nano Liquid Chromatography (nano LC) 181 10.3.4 How to transfer the LC condition from traditional LC to microbore LC, capillary LC or nano LC 182 10.3.5 Homemade micro-scale analytical system 183 10.3.6 Ultra Performance Liquid Chromatography (UPLC) 184 References 185 11 Green Analytical Atomic Spectrometry 199
        Martín Resano, Esperanza García-Ruiz and Miguel A. Belarra 11.1 Atomic spectrometry in the context of Green Analytical Chemistry 199 11.2 Improvements in sample pretreatment strategies 202 11.2.1 Specific improvements 202 11.2.2 Slurry methods 204 11.3 Direct solid sampling techniques 205 11.3.1 Basic operating principles of the techniques discussed 205 11.3.2 Sample requirements and pretreatment strategies 207 11.3.3 Analyte monitoring: The arrival of high-resolution continuum source atomic absorption spectrometry 208 11.3.4 Calibration 210 11.3.5 Selected applications 210 11.4 Future for green analytical atomic spectrometry 213 References 215 12 Solid Phase Molecular Spectroscopy 221
        Antonio Molina-Díaz, Juan Francisco García-Reyes and Natividad Ramos-Martos 12.1 Solid phase molecular spectroscopy: an approach to Green Analytical Chemistry 221 12.2 Fundamentals of solid phase molecular spectroscopy 222 12.2.1 Solid phase absorption (spectrophotometric) procedures 222 12.2.2 Solid phase emission (fluorescence) procedures 225 12.3 Batch mode procedures 225 12.4 Flow mode procedures 226 12.4.1 Monitoring an intrinsic property 227 12.4.2 Monitoring derivative species 231 12.4.3 Recent flow-SPMS based approaches 232 12.5 Selected examples of application of solid phase molecular spectroscopy 233 12.6 The potential of flow solid phase envisaged from the point of view of Green Analytical Chemistry 235 References 240 13 Derivative Techniques in Molecular Absorption, Fluorimetry and Liquid Chromatography as Tools for Green Analytical Chemistry 245
        José Manuel Cano Pavón, Amparo García de Torres, Catalina Bosch Ojeda, Fuensanta Sánchez Rojas and Elisa I. Vereda Alonso 13.1 The derivative technique as a tool for Green Analytical Chemistry 245 13.1.1 Theoretical aspects 246 13.2 Derivative absorption spectrometry in the UV-visible region 247 13.2.1 Strategies to greener derivative spectrophotometry 248 13.3 Derivative fluorescence spectrometry 250 13.3.1 Derivative synchronous fluorescence spectrometry 251 13.4 Use of derivative signal techniques in liquid chromatography 254 References 255 14 Greening Electroanalytical Methods 261
        Paloma Yáñez-Sedeño, José M. Pingarrón and Lucas Hernández 14.1 Towards a more environmentally friendly electroanalysis 261 14.2 Electrode materials 262 14.2.1 Alternatives to mercury electrodes 262 14.2.2 Nanomaterial-based electrodes 268 14.3 Solvents 270 14.3.1 Ionic liquids 271 14.3.2 Supercritical fluids 273 14.4 Electrochemical detection in flowing solutions 274 14.4.1 Injection techniques 274 14.4.2 Miniaturized systems 276 14.5 Biosensors 278 14.5.1 Greening biosurface preparation 278 14.5.2 Direct electrochemical transfer of proteins 281 14.6 Future trends in green electroanalysis 282 References 282 Section III: Strategies 289 15 Energy Savings in Analytical Chemistry 291
        Mihkel Koel 15.1 Energy consumption in analytical methods 291 15.2 Economy and saving energy in laboratory practice 294 15.2.1 Good housekeeping, control and maintenance 295 15.3 Alternative sources of energy for processes 296 15.3.1 Using microwaves in place of thermal heating 297 15.3.2 Using ultrasound in sample treatment 299 15.3.3 Light as a source of energy 301 15.4 Using alternative solvents for energy savings 302 15.4.1 Advantages of ionic liquids 303 15.4.2 Using subcritical and supercritical fluids 303 15.5 Efficient laboratory equipment 305 15.5.1 Trends in sample treatment 306 15.6 Effects of automation and micronization on energy consumption 307 15.6.1 Miniaturization in sample treatment 308 15.6.2 Using sensors 310 15.7 Assessment of energy efficiency 312 References 316 16 Green Analytical Chemistry and Flow Injection Methodologies 321
        Luis Dante Martínez, Soledad Cerutti and Raúl Andrés Gil 16.1 Progress of automated techniques for Green Analytical Chemistry 321 16.2 Flow injection analysis 322 16.3 Sequential injection analysis 325 16.4 Lab-on-valve 327 16.5 Multicommutation 328 16.6 Conclusions and remarks 334 References 334 17 Miniaturization 339
        Alberto Escarpa, Miguel Ángel López and Lourdes Ramos 17.1 Current needs and pitfalls in sample preparation 340 17.2 Non-integrated approaches for miniaturized sample preparation 341 17.2.1 Gaseous and liquid samples 341 17.2.2 Solid samples 350 17.3 Integrated approaches for sample preparation on microfluidic platforms 353 17.3.1 Microfluidic platforms in sample preparation process 353 17.3.2 The isolation of analyte from the sample matrix: filtering approaches 356 17.3.3 The isolation of analytes from the sample matrix: extraction approaches 360 17.3.4 Preconcentration approaches using electrokinetics 365 17.3.5 Derivatization schemes on microfluidic platforms 372 17.3.6 Sample preparation in cell analysis 373 17.4 Final remarks 378 References 379 18 Micro- and Nanomaterials Based Detection Systems Applied in Lab-on-a-Chip Technology 389
        Mariana Medina-Sánchez and Arben Merkoçi 18.1 Micro- and nanotechnology in Green Analytical Chemistry 389 18.2 Nanomaterials-based (bio)sensors 390 18.2.1 Optical nano(bio)sensors 391 18.2.2 Electrochemical nano(bio)sensors 393 18.2.3 Other detection principles 395 18.3 Lab-on-a-chip (LOC) technology 396 18.3.1 Miniaturization and nano-/microfluidics 396 18.3.2 Micro- and nanofabrication techniques 397 18.4 LOC applications 398 18.4.1 LOCs with optical detections 398 18.4.2 LOCs with electrochemical detectors 398 18.4.3 LOCs with other detections 399 18.5 Conclusions and future perspectives 400 References 401 19 Photocatalytic Treatment of Laboratory Wastes Containing Hazardous Organic Compounds 407
        Edmondo Pramauro, Alessandra Bianco Prevot and Debora Fabbri 19.1 Photocatalysis 407 19.2 Fundamentals of the photocatalytic process 408 19.3 Limits of the photocatalytic treatment 408 19.4 Usual photocatalytic procedure in laboratory practice 408 19.4.1 Solar detoxification of laboratory waste 409 19.5 Influence of experimental parameters 411 19.5.1 Dissolved oxygen 411 19.5.2 pH 411 19.5.3 Catalyst concentration 412 19.5.4 Degradation kinetics 412 19.6 Additives reducing the e−/h+ recombination 412 19.7 Analytical control of the photocatalytic treatment 413 19.8 Examples of possible applications of photocatalysis to the treatment of laboratory wastes 413 19.8.1 Percolates containing soluble aromatic contaminants 414 19.8.2 Photocatalytic destruction of aromatic amine residues in aqueous wastes 414 19.8.3 Degradation of aqueous wastes containing pesticides residue 415 19.8.4 The peculiar behaviour of triazine herbicides 416 19.8.5 Treatment of aqueous wastes containing organic solvent residues 416 19.8.6 Treatment of surfactant-containing aqueous wastes 416 19.8.7 Degradation of aqueous solutions of azo-dyes 419 19.8.8 Treatment of laboratory waste containing pharmaceuticals 419 19.9 Continuous monitoring of photocatalytic treatment 420 References 420 Section IV: Fields of Application 425 20 Green Bioanalytical Chemistry 427
        Tadashi Nishio and Hideko Kanazawa 20.1 The analytical techniques in bioanalysis 427 20.2 Environmental-responsive polymers 428 20.3 Preparation of a polymer-modified surface for the stationary phase of environmental-responsive chromatography 430 20.4 Temperature-responsive chromatography for green analytical methods 432 20.5 Biological analysis by temperature-responsive chromatography 432 20.5.1 Analysis of propofol in plasma using water as a mobile phase 434 20.5.2 Contraceptive drugs analysis using temperature gradient chromatography 435 20.6 Affinity chromatography for green bioseparation 436 20.7 Separation of biologically active molecules by the green chromatographic method 438 20.8 Protein separation by an aqueous chromatographic system 441 20.9 Ice chromatography 442 20.10 High-temperature liquid chromatography 443 20.11 Ionic liquids 443 20.12 The future in green bioanalysis 444 References 444 21 Infrared Spectroscopy in Biodiagnostics: A Green Analytical Approach 449
        Mohammadreza Khanmohammadi and Amir Bagheri Garmarudi 21.1 Infrared spectroscopy capabilities 449 21.2 Infrared spectroscopy of bio-active chemicals in a bio-system 451 21.3 Medical analysis of body fluids by infrared spectroscopy 453 21.3.1 Blood and its extracts 455 21.3.2 Urine 457 21.3.3 Other body fluids 457 21.4 Diagnosis in tissue samples via IR spectroscopic analysis 457 21.4.1 Main spectral characteristics 459 21.4.2 The role of data processing 460 21.4.3 Cancer diagnosis by FTIR spectrometry 465 21.5 New trends in infrared spectroscopy assisted biodiagnostics 468 References 470 22 Environmental Analysis 475
        Ricardo Erthal Santelli, Marcos Almeida Bezerra, Julio Carlos Afonso, Maria de Fátima Batista de Carvalho, Eliane Padua Oliveira and Aline Soares Freire 22.1 Pollution and its control 475 22.2 Steps of an environmental analysis 476 22.2.1 Sample collection 476 22.2.2 Sample preparation 476 22.2.3 Analysis 479 22.3 Green environmental analysis for water, wastewater and effluent 480 22.3.1 Major mineral constituents 480 22.3.2 Trace metal ions 481 22.3.3 Organic pollutants 483 22.4 Green environmental analysis applied for solid samples 485 22.4.1 Soil 485 22.4.2 Sediments 488 22.4.3 Wastes 492 22.5 Green environmental analysis applied for atmospheric samples 496 22.5.1 Gases 496 22.5.2 Particulates 497 References 497 23 Green Industrial Analysis 505
        Sergio Armenta and Miguel de la Guardia 23.1 Greening industrial practices for safety and cost reasons 505 23.2 The quality control of raw materials and end products 506 23.3 Process control 510 23.4 Effluent control 511 23.5 Working atmosphere control 514 23.6 The future starts now 515 References 515 Index 519
      더보기

      온라인 도서 정보

      온라인 서점 구매

      온라인 서점 구매 정보
      서점명 서명 판매현황 종이책 전자책 구매링크
      정가 판매가(할인율) 포인트(포인트몰)
      예스24.com

      Handbook of Green Analytical Chemistry

      품절 206,000원 206,000원 (0%)

      종이책 구매

      10,300포인트 (5%)
      알라딘

      Handbook of Green Analytical Chemistry (Hardcover, New)

      판매중 283,680원 28,360원 (90%)

      종이책 구매

      290포인트
      • 포인트 적립은 해당 온라인 서점 회원인 경우만 해당됩니다.
      • 상기 할인율 및 적립포인트는 온라인 서점에서 제공하는 정보와 일치하지 않을 수 있습니다.
      • RISS 서비스에서는 해당 온라인 서점에서 구매한 상품에 대하여 보증하거나 별도의 책임을 지지 않습니다.

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼